首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   15篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   8篇
  2003年   4篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   5篇
  1988年   2篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
71.

Background and Aims

Flow cytometry has been used to measure nuclear DNA content in pollen, mostly to understand pollen development and detect unreduced gametes. Published data have not always met the high-quality standards required for some applications, in part due to difficulties inherent in the extraction of nuclei. Here we describe a simple and relatively novel method for extracting pollen nuclei, involving the bursting of pollen through a nylon mesh, compare it with other methods and demonstrate its broad applicability and utility.

Methods

The method was tested across 80 species, 64 genera and 33 families, and the data were evaluated using established criteria for estimating genome size and analysing cell cycle. Filter bursting was directly compared with chopping in five species, yields were compared with published values for sonicated samples, and the method was applied by comparing genome size estimates for leaf and pollen nuclei in six species.

Key Results

Data quality met generally applied standards for estimating genome size in 81 % of species and the higher best practice standards for cell cycle analysis in 51 %. In 41 % of species we met the most stringent criterion of screening 10 000 pollen grains per sample. In direct comparison with two chopping techniques, our method produced better quality histograms with consistently higher nuclei yields, and yields were higher than previously published results for sonication. In three binucleate and three trinucleate species we found that pollen-based genome size estimates differed from leaf tissue estimates by 1·5 % or less when 1C pollen nuclei were used, while estimates from 2C generative nuclei differed from leaf estimates by up to 2·5 %.

Conclusions

The high success rate, ease of use and wide applicability of the filter bursting method show that this method can facilitate the use of pollen for estimating genome size and dramatically improve unreduced pollen production estimation with flow cytometry.  相似文献   
72.

Introduction

Genetic and disease-related factors give rise to a wide spectrum of glucocorticoid (GC) sensitivity in rheumatoid arthritis (RA). In clinical practice, GC treatment is not adapted to these differences in GC sensitivity. In vitro assessment of GC sensitivity before the start of therapy could allow more individualized GC therapy. The aim of the study was to investigate the association between in vitro and in vivo GC sensitivity in RA.

Methods

Thirty-eight early and 37 established RA patients were prospectively studied. In vitro GC sensitivity was assessed with dexamethasone-induced effects on interleukin-2 (IL-2) and glucocorticoid-induced leucine zipper (GILZ) messenger RNA expression in peripheral blood mononuclear cells (PBMCs). A whole-cell dexamethasone-binding assay was used to measure number and affinity (1/KD) of glucocorticoid receptors (GRs).In vivo GC sensitivity was determined by measuring the disease activity score (DAS) and health assessment questionnaire disability index (HAQ-DI) score before and after 2 weeks of standardized GC treatment.

Results

GR number was positively correlated with improvement in DAS. IL-2-EC50 and GILZ-EC50 values both had weak near-significant correlations with clinical improvement in DAS in intramuscularly treated patients only. HAQ responders had lower GILZ-EC50 values and higher GR number and KD.

Conclusions

Baseline cellular in vitro glucocorticoid sensitivity is modestly associated with in vivo improvement in DAS and HAQ-DI score after GC bridging therapy in RA. Further studies are needed to evaluate whether in vitro GC sensitivity may support the development of tailor-made GC therapy in RA.  相似文献   
73.
Regulated phosphorylation by protein tyrosine kinases (PTKs), such as c-Abl, is critical to cellular homeostasis. In turn, once deregulated as in the chronic myeloid leukemia (CML) fusion protein Bcr-Abl, PTKs can promote cancer onset and progression. The dramatic success of the Bcr-Abl inhibitor imatinib as therapy for CML has inspired interest in other PTKs as targets for cancer drug discovery. Here we report a novel PTK activity and inhibition screening method using hydrogel-immobilized peptide substrates. Using acrylate crosslinkers, we tether peptides via terminal cysteines to thiol-presenting hydrogels in 96-well plates. These surfaces display low background and high reproducibility, allowing semiquantitative detection of peptide phosphorylation by recombinant c-Abl or by Bcr-Abl activity in cell extracts using traditional anti-phosphotyrosine immunodetection and chemifluorescence. The capabilities of this assay are demonstrated by performing model screens for inhibition with several commercially available PTK inhibitors and a collection of pyridopyrimidine Src/Abl dual inhibitors. This assay provides a practical method to measure the activity of a single kinase present in a whole cell lysate with high sensitivity and specificity as a valuable means for efficient small molecule screening.  相似文献   
74.
75.
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term ' asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as one component of a larger concept. The other component relates to the brain and cranium of AIS subjects because abnormalities have been found in brain (infratentorial and supratentorial) and skull (vault and base). The possible relevance of systemic melatonin-signaling pathway dysfunction, platelet calmodulin levels and putative vertebral vascular biology to the asynchronous neuro-osseous growth concept is discussed. A biomechanical model to test the spinal component of the concept is in hand. There is no published research on the biomechanical properties of the spinal cord for scoliosis specimens. Such research on normal spinal cords includes movements (kinematics), stress-strain responses to uniaxial loading, and anterior forces created by the stretched cord in forward flexion that may alter sagittal spinal shape during adolescent growth. The asynchronous neuro-osseous growth concept for the spine evokes controversy. Dr Chu and colleagues respond to five other concepts of pathogenesis for AIS and suggest that relative anterior spinal overgrowth and biomechanical growth modulation may also contribute to AIS pathogenesis.  相似文献   
76.
The activation of adenosine 2A receptors before reperfusion following coronary artery occlusion reduces infarct size and improves ejection fraction (EF). In this study, we examined the effects of delaying treatment with the adenosine 2A receptor agonist ATL146e (ATL) until 1 h postreperfusion. The infarct size and EF were serially assessed by gadolinium-diethylenetriaminepentaacetic acid-enhanced MRI in C57BL/6 mice at 1 and 24 h postreperfusion. The infarct size was also assessed by 2,3,5-triphenyltetrazolium chloride staining at 24 h. Mice were treated with ATL (10 microg/kg ip) either 2 min before reperfusion (early ATL) or 1 h postreperfusion (late ATL) following the 45-min coronary occlusion. The two methods used to assess infarct size at 24 h postreperfusion (MRI and 2,3,5-triphenyltetrazolium chloride) showed an excellent correlation (R=0.96). The risk region, determined at 24 h postreperfusion, was comparable between the control and ATL-treated groups. The infarct size by MRI at 1 versus 24 h postreperfusion was 25+/-1 vs. 26+/-1% of left ventricular mass (means+/-SE) in control mice, 16+/-2 versus 17+/-2% in early-ATL mice, and 24+/-2 versus 25+/-2% in late-ATL mice (intragroup, P=not significant; and intergroup, early ATL vs. control or late ATL, P<0.05). EF was reduced in control mice but was largely preserved between 1 and 24 h in both early-ATL and late-ATL mice (P<0.05). In conclusion, after coronary occlusion in mice, the extent of myocellular death due to ischemia-reperfusion injury is 95% complete within 1 h of reperfusion. The infarct size was significantly reduced by ATL when given just before reperfusion, but not 1 h postreperfusion. Either treatment window helped preserve the EF between 1 and 24 h postreperfusion.  相似文献   
77.
78.
Multiple surveillance pathways maintain genomic integrity in yeast during mitosis. Although the cyclin-dependent kinase Cdc28 is a well established regulator of mitotic progression, evidence for a direct role in mitotic surveillance has been lacking. We have now implicated a conserved sequence in the Cdc28 carboxyl terminus in maintaining chromosome stability through mitosis. Six temperature-sensitive mutants were isolated via random mutagenesis of 13 carboxyl-terminal residues. These mutants identify a Cdc28 domain necessary for proper mitotic arrest in the face of kinetochore defects or microtubule inhibitors. These chromosome stability-defective cdc28(CST) mutants inappropriately continue mitosis when the mitotic spindle is disrupted at 23 degrees C, display high rates of spontaneous chromosome loss at 30 degrees C, and suffer catastrophic aneuploidy at 35 degrees C. A dosage suppression screen identified Cak1, a kinase known to phosphorylate and activate Cdc28, as a specific high copy suppressor of cdc28(CST) temperature sensitivity and chromosome instability. Suppression is independent of the kinase activity of Cak1, suggesting that Cak1 may bind to the carboxyl terminus to serve a non-catalytic role in assembly and/or stabilization of active Cdc28 complexes. Significantly, these studies implicate Cdc28 and Cak1 in an essential surveillance function required to maintain genetic stability through mitosis.  相似文献   
79.
Haploid Saccharomyces cerevisiae cells growing on media lacking glucose but containing high concentrations of carbon sources such as fructose, galactose, raffinose, and ethanol exhibit enhanced agar invasion. These carbon sources also promote diploid filamentous growth in response to nitrogen starvation. The enhanced invasive and filamentous growth phenotypes are suppressed by the addition of glucose to the media and require the Snf1 kinase. Mutations in the PGI1 and GND1 genes encoding carbon source utilization enzymes confer enhanced invasive growth that is unaffected by glucose but requires active Snf1. Carbon source does not modulate FLO11 flocculin expression, but enhanced polarized bud site selection is necessary for invasion on certain carbon sources. Interestingly, deletion of SNF1 blocks invasion without affecting bud site selection. Snf1 is also required for formation of spokes and hubs in multicellular mats. To examine glucose repression of invasive growth more broadly, we performed genome-wide microarray expression analysis in wild-type cells growing on glucose and galactose, and snf1 Delta cells on galactose. SNF1 probably mediates glucose repression of multiple genes potentially involved in invasive and filamentous growth. FLO11-independent cell-cell attachment, cell wall integrity, and/or polarized growth are affected by carbon source metabolism. In addition, derepression of cell cycle genes and signalling via the cAMP-PKA pathway appears to depend upon SNF1 activity during growth on galactose.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号