首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   35篇
  2023年   2篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   17篇
  2015年   21篇
  2014年   30篇
  2013年   22篇
  2012年   37篇
  2011年   31篇
  2010年   17篇
  2009年   8篇
  2008年   20篇
  2007年   11篇
  2006年   14篇
  2005年   14篇
  2004年   18篇
  2003年   18篇
  2002年   8篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
81.

Aim

Past land use legacy effects—extinction debts and immigration credits—might be particularly pronounced in regions characterized by complex and dynamic landscape change. The aim of this study was to evaluate how current woody plant species distribution, composition and richness related to historical and present land uses.

Location

A smallholder farming landscape in south‐western Ethiopia.

Methods

We surveyed woody plants in 72 randomly selected 1‐ha sites in farmland and grouped them into forest specialist, generalist and pioneer species. First, we investigated woody plant composition and distribution using non‐metric multidimensional scaling. Second, we modelled species richness in response to historical and current distance from the forest edge. Third, we examined diameter class distributions of trees in recently converted vs. permanent farmland.

Results

Historical distance was a primary driver of woody plant composition and distribution. Generalist and pioneer species richness increased with historical distance. Forest specialists, however, did not respond to historical distance. Only few old individuals of forest specialist species remained in both recently converted and permanent farmlands.

Main conclusions

Our findings suggest that any possible extinction debt for forest specialist species in farmland at the landscape scale was rapidly paid off, possibly because farmers cleared large remnant trees. In contrast, we found substantial evidence of immigration credits in farmland for generalist and pioneer species. This suggests that long‐established farmland may have unrecognized conservation values, although apparently not for forest specialist species. We suggest that conservation policies in south‐western Ethiopia should recognize not only forests, but also the complementary value of the agricultural mosaic—similar to the case of European cultural landscapes. A possible future priority could be to better reintegrate forest species in the farmland mosaic.
  相似文献   
82.
Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1–40 and Aβ1–42 are the dominant forms. The fibril architectures of Aβ1–40 and Aβ1–42 differ and Aβ1–42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1–42 can be cross-templated and incorporated into the ends of Aβ1–40 fibrils, while incorporation of Aβ1–40 monomers into Aβ1–42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1–40 to incorporate into the ends of Aβ1–42 fibrils and the capacity of Aβ1–42 monomers to adopt the properties of Aβ1–40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1–42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1–40 from adopting the fibrillar properties of Aβ1–42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation.  相似文献   
83.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   
84.
The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation.  相似文献   
85.
86.
87.
88.
89.
3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods.  相似文献   
90.
Curli are functional amyloids produced by enteric bacteria. The major curli fiber subunit, CsgA, self-assembles into an amyloid fiber in vitro. The minor curli subunit protein, CsgB, is required for CsgA polymerization on the cell surface. Both CsgA and CsgB are composed of five predicted β-strand-loop-β-strand-loop repeating units that feature conserved glutamine and asparagine residues. Because of this structural homology, we proposed that CsgB might form an amyloid template that initiates CsgA polymerization on the cell surface. To test this model, we purified wild-type CsgB and found that it self-assembled into amyloid fibers in vitro. Preformed CsgB fibers seeded CsgA polymerization as did soluble CsgB added to the surface of cells secreting soluble CsgA. To define the molecular basis of CsgB nucleation, we generated a series of mutants that removed each of the five repeating units. Each of these CsgB deletion mutants was capable of self-assembly in vitro. In vivo, membrane-localized mutants lacking the first, second, or third repeating units were able to convert CsgA into fibers. However, mutants missing either the fourth or fifth repeating units were unable to complement a csgB mutant. These mutant proteins were not localized to the outer membrane but were instead secreted into the extracellular milieu. Synthetic CsgB peptides corresponding to repeating units 1, 2, and 4 self-assembled into ordered amyloid polymers, while peptides corresponding to repeating units 3 and 5 did not, suggesting that there are redundant amyloidogenic domains in CsgB. Our results suggest a model where the rapid conversion of CsgB from unstructured protein to a β-sheet-rich amyloid template anchored to the cell surface is mediated by the C-terminal repeating units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号