首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   59篇
  2021年   7篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   15篇
  2015年   18篇
  2014年   18篇
  2013年   20篇
  2012年   31篇
  2011年   16篇
  2010年   18篇
  2009年   20篇
  2008年   21篇
  2007年   17篇
  2006年   31篇
  2005年   29篇
  2004年   20篇
  2003年   22篇
  2002年   24篇
  2001年   23篇
  2000年   17篇
  1999年   16篇
  1998年   9篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   11篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
排序方式: 共有506条查询结果,搜索用时 20 毫秒
81.
Streptococcus pneumoniae is the most frequent cause of bacterial meningitis, leading to permanent neurological damage in 30% and lethal outcome in 25% of patients. The cholesterol-dependent cytolysin pneumolysin is a major virulence factor of S. pneumoniae . It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. Here, we show that sublytic amounts of pneumolysin produce rapid bundling and increased acetylation of microtubules (signs of excessive microtubule stabilization) in various types of cells – neuroblastoma cells, fibroblasts and primary astrocytes. The bundling started perinuclearly and extended peripherally towards the membrane. The effect was not connected to pneumolysin's capacity to mediate calcium influx, macropore formation, apoptosis, or RhoA and Rac1 activation. Cellular cholesterol depletion and neutralization of the toxin by pre-incubation with cholesterol completely inhibited the microtubule phenotype. Pharmacological inhibition of Src-family kinases diminished microtubule bundling, suggesting their involvement in the process. The relevance of microtubule stabilization to meningitis was confirmed in an experimental pneumococcal meningitis animal model, where increased acetylation was observed. Live imaging experiments demonstrated a decrease in organelle motility after toxin challenge in a manner comparable to the microtubule-stabilizing agent taxol, thus proposing a possible pathogenic mechanism that might contribute to the CNS damage in pneumococcal meningitis.  相似文献   
82.
83.
The amyloid precursor protein (APP) is implied both in cell growth and differentiation and in neurodegenerative processes in Alzheimer disease. Regulated proteolysis of APP generates biologically active fragments such as the neuroprotective secreted ectodomain sAPPα and the neurotoxic β-amyloid peptide. Furthermore, it has been suggested that the intact transmembrane APP plays a signaling role, which might be important for both normal synaptic plasticity and neuronal dysfunction in dementia. To understand APP signaling, we tracked single molecules of APP using quantum dots and quantitated APP homodimerization using fluorescence lifetime imaging microscopy for the detection of Förster resonance energy transfer in living neuroblastoma cells. Using selective labeling with synthetic fluorophores, we show that the dimerization of APP is considerably higher at the plasma membrane than in intracellular membranes. Heparan sulfate significantly contributes to the almost complete dimerization of APP at the plasma membrane. Importantly, this technique for the first time structurally defines the initiation of APP signaling by binding of a relevant physiological extracellular ligand; our results indicate APP as receptor for neuroprotective sAPPα, as sAPPα binding disrupts APP dimers, and this disruption of APP dimers by sAPPα is necessary for the protection of neuroblastoma cells against starvation-induced cell death. Only cells expressing reversibly dimerized wild-type, but not covalently dimerized mutant APP are protected by sAPPα. These findings suggest a potentially beneficial effect of increasing sAPPα production or disrupting APP dimers for neuronal survival.The amyloid precursor protein (APP)4 is known both for its important role in the development and plasticity of the nervous system (16) and for its involvement in Alzheimer disease (AD) (7, 8). Despite intensive research efforts, the initial events that lead to the prevalent sporadic, i.e. non-familial, forms of AD are still unclear. Furthermore, although a higher gene dose of APP (9) or the presence of pathological APP mutations is sufficient to induce familial AD (for review, see Ref. 10), the exact pathological mechanism that is triggered by APP is still under debate.Some fragments of APP, such as the β-amyloid peptide (Aβ), are thought to contribute to synaptic dysfunction and neurotoxicity (11, 12). On the other hand, the α-secretase-derived extracellular fragment of APP (sAPPα), which is present at lower levels in AD patients than in controls (13), has been shown to be beneficial for memory function, to possess neuroprotective properties, and to counteract the effects of Aβ (1418).Signaling by transmembrane APP may directly contribute to neurodegeneration in AD (1924); however, the signal transduction pathway for transmembrane APP remains unknown, although several potential regulatory proteins, glycosaminoglycans, and metal ions are known to bind with high affinity to APP and sAPPα (25, 26). The most common form of signal transduction for single-pass transmembrane proteins is the ligand-induced perturbation of a monomer/dimer equilibrium. Indeed, the dimerization of transmembrane APP has been implied several times in the past. Several studies have investigated the effects of presumed dimer-breaking perturbations on biological read-outs, such as the production of Aβ (27, 28), but without directly measuring the APP aggregation state, or have investigated the aggregation state of APP subdomains, often reconstituted in cell-free systems (2732). Dimerization interfaces in both the extracellular and the transmembrane domain have been suggested.In the studies investigating the aggregation state of full-length APP, most of the employed methods, such as chemical cross-linking and co-immunoprecipitation, do not lend themselves readily to a rigorous quantitative analysis of the abundance of potentially instable dimers (31, 33), whereas in other cases the use of chimeras may have influenced the dimerization potential or precluded the search for a natural stimulus (23, 34). The only previously reported direct observation of APP dimerization by Förster resonance energy transfer (FRET) microscopy uses an assay in which the FRET efficiency varies with the level of overexpression (35). Therefore, a concentration-dependent FRET component due to nonspecific stochastic encounters cannot be excluded in this study.Most importantly, as none of the published procedures permitted the selective detection of APP dimers on the surface of live cells, where they would encounter ligands, they could not differentiate between subpopulations of APP. This may be one reason why no natural ligand of APP has ever been shown to signal via modulation of its monomer/dimer equilibrium.Another elusive goal is the identity of the receptor for neuroprotective sAPPα (3639). The ligand-dependent dimerization of sAPPα in solution (40) and its origination from transmembrane APP suggest that APP might serve as receptor for sAPPα, but this binding has never been experimentally shown.  相似文献   
84.

Background

Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man.

Methods/Principal Findings

We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO). Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4×10−3 (0.95−5.1×10−3) % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.

Conclusions/Significance

The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.  相似文献   
85.

Background

Human strongyloidiasis varies from a chronic but limited infection in normal hosts to hyperinfection in patients treated with corticosteroids or with HTLV-1 co-infection. Regulatory T cells dampen immune responses to infections. How human strongyloidiasis is controlled and how HTLV-1 infection affects this control are not clear. We hypothesize that HTLV-1 leads to dissemination of Strongyloides stercoralis infection by augmenting regulatory T cell numbers, which in turn down regulate the immune response to the parasite.

Objective

To measure peripheral blood T regulatory cells and Strongyloides stercoralis larval antigen-specific cytokine responses in strongyloidiasis patients with or without HTLV-1 co-infection.

Methods

Peripheral blood mononuclear cells (PBMCs) were isolated from newly diagnosed strongyloidiasis patients with or without HTLV-1 co-infection. Regulatory T cells were characterized by flow cytometry using intracellular staining for CD4, CD25 and FoxP3. PBMCs were also cultured with and without Strongyloides larval antigens. Supernatants were analyzed for IL-5 production.

Results

Patients with HTLV-1 and Strongyloides co-infection had higher parasite burdens. Eosinophil counts were decreased in the HTLV-1 and Strongyloides co-infected subjects compared to strongyloidiasis-only patients (70.0 vs. 502.5 cells/mm3, p = 0.09, Mann-Whitney test). The proportion of regulatory T cells was increased in HTLV-1 positive subjects co-infected with strongyloidiasis compared to patients with only strongyloidiasis or asymptomatic HTLV-1 carriers (median = 17.9% vs. 4.3% vs. 5.9 p<0.05, One-way ANOVA). Strongyloides antigen-specific IL-5 responses were reduced in strongyloidiasis/HTLV-1 co-infected patients (5.0 vs. 187.5 pg/ml, p = 0.03, Mann-Whitney test). Reduced IL-5 responses and eosinophil counts were inversely correlated to the number of CD4+CD25+FoxP3+ cells.

Conclusions

Regulatory T cell counts are increased in patients with HTLV-1 and Strongyloides stercoralis co-infection and correlate with both low circulating eosinophil counts and reduced antigen-driven IL-5 production. These findings suggest a role for regulatory T cells in susceptibility to Strongyloides hyperinfection.  相似文献   
86.
The synthesis of novel coumarins bearing on the lateral side chain in the 3-position an amine or a guanidine group is described. In vitro evaluation highlighted 14d which possesses a meta aniline side chain as a very potent THR inhibitor. Surprisingly, the introduction of a guanidine moiety always led to a decrease in THR inhibiting properties. We, thus, used docking experiments to rationalize the SAR in the series. This study showed the crucial role of a conserved water molecule in the specificity pocket of THR during docking simulation in order to explain the inactivity of guanidine derivatives.  相似文献   
87.
Substituted (thio)hydantoins (2-thioxoimidazolidinones and imidazolidinediones) were reported as new potential reversible inhibitors of fatty acid amide hydrolase (FAAH). Their binding mode to FAAH was explored to rationalize their activity and give idea to design highly active inhibitors. Starting from the crystal structure of one of these molecules, docking studies provide us with rational basis for the design of new inhibitors within the thiohydantoin family.  相似文献   
88.
Aggregated and highly phosphorylated tau protein is a pathological hallmark of Alzheimer's disease (AD) and other tauopathies. We identified motifs of alternating polar and apolar amino acids within the microtubule-binding repeats of tau which were interrupted by small breaking stretches. Minimal mutation of these breaking sequences yielded a unique instantly aggregating tau mutant containing longer stretches of polar/apolar amino acids without losing its microtubule-binding capacity. These modifications produced rapid aggregation and cytotoxicity with accompanying occurrence of pathologic tau phosphoepitopes (AT8, AT180, AT270, AT100, Ser(422), and PHF-1) and conformational epitopes (MC-1 and Alz50) in cells. Similar to pathological tau in the pretangle state, toxicity appeared to occur early without the requirement for extensive fibril formation. Thus, our mutant protein provides a novel platform for the investigation of the molecular mechanisms for toxicity and cellular behavior of pathologically aggregated tau proteins and the identification of its interaction partners.  相似文献   
89.
Isopentenyl-diphosphate (IPP):dimethylallyl diphosphate isomerase is a key enzyme in the biosynthesis of isoprenoids. The mechanism of the isomerization reaction involves protonation of the unactivated carbon-carbon double bond in the substrate, but identity of the acidic moiety providing the proton is still not clear. Multiple sequence alignments and geometrical features observed in crystal structures of complexes with IPP isomerase suggest that Tyr-104 could play an important role during catalysis. A series of mutants was constructed by directed mutagenesis and characterized by enzymology. Crystallographic and thermal denaturation data for Y104A and Y104F mutants were obtained. Those data demonstrate the importance of residue Tyr-104 for proper folding of Escherichia coli type I IPP isomerase.  相似文献   
90.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号