首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   15篇
  2019年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1975年   1篇
  1974年   4篇
  1972年   3篇
  1971年   1篇
  1969年   2篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
101.
The Pseudomonas aeruginosa gene anr, which encodes a structural and functional analog of the anaerobic regulator Fnr in Escherichia coli, was mapped to the SpeI fragment R, which is at about 59 min on the genomic map of P. aeruginosa PAO1. Wild-type P. aeruginosa PAO1 grew under anaerobic conditions with nitrate, nitrite, and nitrous oxide as alternative electron acceptors. An anr deletion mutant, PAO6261, was constructed. It was unable to grow with these alternative electron acceptors; however, its ability to denitrify was restored upon the introduction of the wild-type anr gene. In addition, the activities of two enzymes in the denitrification pathway, nitrite reductase and nitric oxide reductase, were not detectable under oxygen-limiting conditions in strain PAO6261 but were restored when complemented with the anr+ gene. These results indicate that the anr gene product plays a key role in anaerobically activating the entire denitrification pathway.  相似文献   
102.
Summary Ammonium fertilizer applied to tea soils is readily converted to nitrate by the nitrifying bacteria in soil. Excess nitrate in soil could undergo rapid leaching losses under high rainfall conditions. Data is presented in this paper to show that waste tea could be effectively used to retard and delay nitrate production and thereby prevent loss of nitrogen as nitrate by leaching. Evidence is also presented to show that waste tea readily liberates ammonium nitrogen in soil.  相似文献   
103.
The transposon Tn1 has been translocated to the chromosome of Pseudomonas aeruginosa from plasmid R18, following hydroxylamine mutagenesis of the plasmid. Twelve insertions were mapped to six distinct sites distal to 55 min of the origin of chromosome transfer by the plasmid FP2. These map locations were confirmed by host chromosome mobilization tests mediated by plasmids R18 or R91-5, due to Tn1 homology between plasmid and host chromosome. All the Tn1 chromosomal inserts were retransposable to other plasmids (Sa, R931 and R38). The behavior of Tn1 in P. aeruginosa was very similar to its behavior in Escherichia coli with respect to regional specificity, orientation of insertion and in serving as regions of homology for host chromosome mobilization by plasmids. This last property has permitted the demonstration that Tn1 on R18 and R91-5 is in opposite orientation with respect to the origin of transfer (oriT) of the two plasmids.  相似文献   
104.
Of seventy-five actinomycetes isolated from a bean rhizosphere in the United Arab Emirates, an isolate of Streptomyces griseoluteus (WT) was found to be capable of producing relatively high levels of putrescine on decarboxylase agar medium and to produce putrescine, spermidine and spermine in liquid decarboxylase medium. In the glasshouse, the application of the WT strain to soil amended with arginine (as a precursor for putrescine) significantly (P < 0.05) promoted the growth of bean plants and increased the fresh and dry weights and lengths of roots and shoots, compared with control plants. Infestation of soil with the WT strain resulted in a significant (P < 0.05) increase in the levels of putrescine, spermidine and spermine, certain endogenous plant growth regulators (PGRs) (indole-acetic acid, and gibberellic acid), chlorophylls (a, b) and carotenoids with a concomitant reduction in the level of abscisic acid in bean plants, compared with control plants. A polyamine non-producing mutant strain (PNPM) obtained from the wild-type isolate (WT), however, failed to promote plant growth. There were no significant (P > 0.05) differences between the levels of polyamines, endogenous PGRs, chlorophylls (a, b), and carotenoids between plants that were not exposed to either of the strain (control) and those grown in soil with the PNPM strain. Both WT and PNPM strains were incapable of producing in vitro detectable levels of PGRs, indole-acetic acid, indole-pyruvic acid, gibberellic acid, isopentenyl adenine and zeatin in the culture filtrates. This study is the first to demonstrate the potential of a polyamine-producing actinomycete to promote plant growth. In addition, it is also the first published report of the production of polyamines by streptomycete actinomycetes.  相似文献   
105.
Benzoic acid, sulfosalicylic acid and methyl salicylic acid wereevaluated for their regulatory role in inducing multiple stress tolerance inbean (Phaseolus vulgaris cv Brown Beauty) and tomato(Lycopersicum esculentum cv Romano) plants. All threemolecules were effective in inducing tolerance to heat, drought and chillingstress similar to that reported previously for salicylic and acetylsalicylicacids. Benzoic acid is effective at lower concentrations than salicylic acid orits derivatives. The benzoic acid structural portion is common to all fivemolecules and is the most likely basic functional molecular structure impartingstress tolerance in plants.  相似文献   
106.
107.
108.
The Brassicaceae species Diplotaxis tenuifolia and Brassica nigra contain high concentrations of glucosinolates, the precursors of isothiocyanates (ITCs) that can have biofumigation effects in amended soils. In a laboratory experiment, incorporation of these plants as green manures into soil was expected to suppress Rhizoctonia solani AG2-1 (ZG5), the causal agent of damping-off in canola (Brassica napus). The manures were incorporated at 1 (1% w/w) or 5 (5% w/w) g fresh material per 100 g dry soil and incubated for 6 months at 10, 20, or 30°C and at soil water contents of 10%, 40%, or 70% of water holding capacity. R. solani survived for up to 6 months as a saprophyte in un-amended soil at all soil water contents and at 10 and 20°C. A temperature of 30°C suppressed R. solani below the level of detection in all treatments after one week. At 1% concentration, the green manures increased the colonisation of the soil by R. solani, which caused severe damping-off of canola subsequently sown in this soil treatment. Soil amendments at 1% temporarily increased soil microbial activity. The addition of B. nigra or D. tenuifolia green manure at 5% concentration suppressed the saprophytic growth of R. solani incubated at 10 or 20°C over all soil water contents and significantly increased the microbial activity at all soil temperatures and water contents. Canola sown into these pots did not succumb to damping-off. The efficiency of hydrolysis of glucosinolates in the 5% treatment in the first week of incubation ranged from 1.6% for 2-propenyl ITC, extracted from soil containing tissues of B. nigra, to 3.4% for 3-butenyl ITC extracted from soil containing tissues of D. tenuifolia. 2-propenyl ITC could not be detected after 7 d of incubation. In the longer term (weeks to months), the increase of microbial activity, caused by adding green manures at 5%, or volatiles from the green manures, most likely played a dominant role in suppressing R. solani. The impact of ITCs, if any, appears to be short-term (days). Responsible Editor: Peter A. H. Bakker  相似文献   
109.
The present study investigates the role of salicylic acid (SA) in inducing plant tolerance to salinity. The application of 0.1 mM SA to tomato [Lycopersicon esculentum Mill.] plants via root drenching provided protection against 150 mM or 200 mM NaCl stress. SA treated plants had greater survival and relative shoot growth rate compared to untreated plants when exposed to salt stress. At 200 mM salt, shoot growth rates were approximately 4 times higher in SA treated plants than untreated plants. Application of SA increased photosynthetic rates in salt stressed plants and may have contributed to the enhanced survival. Transpiration rates and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced electrolyte leakage by 44% in 150 mM NaCl and 32% in 200 mM NaCl, compared to untreated plants, indicating possible protection of integrity of the cellular membrane. Beneficial effects of SA in saline conditions include sustaining the photosynthetic/transpiration activity and consequently growth, and may have contributed to the reduction or total avoidance of necrosis. SA, when used in appropriate concentrations, alleviates salinity stress without compromising the plants ability for growth under a favourable environment.  相似文献   
110.
Field isolates of Rhizoctonia solani obtained from three discrete bare patches in a wheat field in Western Australia were characterized by pectic zymogram grouping. The genetic background of pectic enzymes was analysed by comparing the zymograms of asexual homokaryons and sexual progenies derived from field isolates. The 170 field isolates obtained from the field site produced indistinguishable pectic zymograms. However, variations among field isolates of the same zymogram group were detected, on the basis of zymograms of their resultant protoplast-regenerated cultures. Asexual sibling homokaryons derived from each of the field isolates were heterogeneous for their pectic enzymes. Homokaryons with a common heterokary on incompatibility factor, obtained from a field isolates were homogeneous for pectic enzymes. Basidiospore progenies of a field isolate segregated widely in pectic zymograms. It appeared that the expression of pectic enzymes by field isolates involved multiple genetic factors. The variation of zymograms among homokaryotic strains suggests that each field isolate of R. solani contains two types of nuclei, although cells of vegetative hyphae are multinucleate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号