首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   75篇
  2023年   7篇
  2022年   3篇
  2021年   28篇
  2020年   17篇
  2019年   28篇
  2018年   20篇
  2017年   16篇
  2016年   42篇
  2015年   59篇
  2014年   60篇
  2013年   84篇
  2012年   76篇
  2011年   103篇
  2010年   57篇
  2009年   43篇
  2008年   64篇
  2007年   72篇
  2006年   52篇
  2005年   68篇
  2004年   55篇
  2003年   31篇
  2002年   41篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1957年   1篇
排序方式: 共有1094条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6–5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop‐raiding versus noncrop‐raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.  相似文献   
15.
16.
The liquid–liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer''s Disease. Tau can undergo LLPS by homotypic interaction through self‐coacervation (SC) or by heterotypic association through complex‐coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau‐RNA or Tau‐Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro‐viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro‐viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.  相似文献   
17.
18.
Exotic perennial grasses (EPGs) pose a significant risk to native communities globally. With over 2,200 species in Australia, understanding which characteristics enable high threat invasions, and comparing between functionally similar EPGs, can help prioritise species management. We developed a framework of risk and used the literature to rank 21 EPGs considered a threat to plant communities in New South Wales, while also evaluating the reliability of information currently available. Characteristics were scored within five broad categories that distinguish invasiveness: Arrival, Establishment, Persistence, Impact and Distribution. These included aspects of reproductive biology, competitive ability and environmental tolerance. The risk assessment was effective in assessing key characteristics of invasion. EPGs with an economic benefit (trade‐off species) were more likely to have reliable research and frequently ranked as high‐risk invaders in natural habitats due to the overlap of characteristics important in invasion with those considered important in agriculture. Lack of formal scientific research hindered assessment for some species, and some traits had been poorly assessed in the literature. High uncertainty was associated with key characteristics for Establishment, Persistence and Impact. Uncertainty in key characteristics revealed a need for improved integration of less formal research validated by more formal scientific research. This may lead to more informed decisions in the management of EPGs in native habitats and assist in early control of EPGs not yet assessed.  相似文献   
19.
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of METACASPASE9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1′. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号