首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   15篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   9篇
  2013年   5篇
  2012年   16篇
  2011年   14篇
  2010年   7篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   9篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有166条查询结果,搜索用时 296 毫秒
21.
The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes. Myoferlin also mediates endocytic recycling and participates in trafficking the insulin-like growth factor receptor. We have now characterized a novel member of the ferlin family, Fer1L5, because of its high homology to dysferlin and myoferlin. We found that Fer1L5 protein is expressed in small myotubes that contain only two to four nuclei. We also found that Fer1L5 protein binds directly to the endocytic recycling proteins EHD1 and EHD2 and that the second C2 domain in Fer1L5 mediates this interaction. Reduction of EHD1 and/or EHD2 inhibits myoblast fusion, and EHD2 is required for normal translocation of Fer1L5 to the plasma membrane. The characterization of Fer1L5 and its interaction with EHD1 and EHD2 underscores the complex requirement of ferlin proteins and mediators of endocytic recycling for membrane trafficking events during myotube formation.  相似文献   
22.
23.

Background

Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used.

Methods

The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry), UV–Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H2O2-induced DNA damage.

Results

Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and retained its oxidation profile. Although the protective ability of the quercetin-2HP-β-CD complex against H2O2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin.

Conclusions

We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity.

General significance

The oxidation profile of a natural product once it is encapsulated in a supramolecular carrier was unveiled as also it was discovered that decomplexation can be triggered by a chemical stimilus.  相似文献   
24.
Synthesis and biological evaluation of a novel library of fused 1,2,3-triazole derivatives are described. The in-house developed multicomponent reaction based on commercially available starting materials was applied and broad biological screening against various viruses was performed, showing promising antiviral properties for compounds 14d, 14n, 14q, 18f and 18i against human coronavirus 229E. Further in silico studies identified the key molecular interactions between those compounds and the 3-chymotrypsin-like protease, which is essential to the intracellular replication of the virus, supporting the hypothesis that the protease is the target molecule of the potential antiviral derivatives.  相似文献   
25.
Tumor necrosis factor (TNF) family cytokines are important mediators of inflammation. Elevated levels of serum TNF‐α are associated with human sensorineural hearing loss via poorly understood mechanisms. We demonstrate, for the first time, expression of TNF‐related apoptosis‐inducing ligand (TRAIL) and its signaling death receptor 5 (DR5) in the murine inner ear and show that exogenous TRAIL can trigger hair cell and neuronal degeneration, which can be partly prevented with DR5‐blocking antibodies.  相似文献   
26.
Melatonin, a neuroendocrine hormone synthesized by the pineal gland and cholangiocytes, decreases biliary hyperplasia and liver fibrosis during cholestasis-induced biliary injury via melatonin-dependent autocrine signaling through increased biliary arylalkylamine N-acetyltransferase (AANAT) expression and melatonin secretion, downregulation of miR-200b and specific circadian clock genes. Melatonin synthesis is decreased by pinealectomy (PINX) or chronic exposure to light. We evaluated the effect of PINX or prolonged light exposure on melatonin-dependent modulation of biliary damage/ductular reaction/liver fibrosis. Studies were performed in male rats with/without BDL for 1 week with 12:12 h dark/light cycles, continuous light or after 1 week of PINX. The expression of AANAT and melatonin levels in serum and cholangiocyte supernatant were increased in BDL rats, while decreased in BDL rats following PINX or continuous light exposure. BDL-induced increase in serum chemistry, ductular reaction, liver fibrosis, inflammation, angiogenesis and ROS generation were significantly enhanced by PINX or light exposure. Concomitant with enhanced liver fibrosis, we observed increased biliary senescence and enhanced clock genes and miR-200b expression in total liver and cholangiocytes. In vitro, the expression of AANAT, clock genes and miR-200b was increased in PSC human cholangiocyte cell lines (hPSCL). The proliferation and activation of HHStecs (human hepatic stellate cell lines) were increased after stimulating with BDL cholangiocyte supernatant and further enhanced when stimulated with BDL rats following PINX or continuous light exposure cholangiocyte supernatant via intracellular ROS generation. Conclusion: Melatonin plays an important role in the protection of liver against cholestasis-induced damage and ductular reaction.  相似文献   
27.

Background

Isg15 covalently modifies murine endometrial proteins in response to early pregnancy. Isg15 can also be severed from targeted proteins by a specific protease called Ubp43 (Usp18). Mice lacking Ubp43 (null) form increased conjugated Isg15 in response to interferon. The Isg15 system has not been examined in chorioallantoic placenta (CP) or mesometrial (MM) components of implantation sites beyond 9.5 days post coitum (dpc). It was hypothesized that deletion of Ubp43 would cause disregulation of Isg15 in implantation sites, and that this would affect pregnancy rates.

Methods

Heterozygous (het) Ubp43 mice were mated and MM and CP implantation sites were collected on 12.5 and 17.5 days post-coitum (dpc).

Results

Free and conjugated Isg15 were greater on 12.5 versus 17.5 dpc in MM. Free and conjugated Isg15 were also present in CP, but did not differ due to genotype on 12.5 dpc. However, null CP had greater free and conjugated Isg15 when compared to het/wt on 17.5 dpc. Null progeny died in utero with fetal genotype ratios (wt:het:null) of 2:5:1 on 12.5 and 2:2:1 on 17.5 dpc. Implantation sites were disrupted within the junctional zone and spongiotrophoblast, contained less vasculature based on lectin B4 staining and contained greater Isg15 mRNA and VEGF protein in Ubp43 null when compared to wt placenta.

Conclusion

It is concluded that Isg15 and its conjugates are present in implantation sites during mid to late gestation and that deletion of Ubp43 causes an increase in free and conjugated Isg15 at the feto-maternal interface. Also, under mixed genetic background, deletion of Ubp43 results in fetal death.  相似文献   
28.
Yif1B is an intracellular membrane‐bound protein belonging to the Yip family, shown previously to control serotonin 5‐HT1A receptor targeting to dendrites. Because some Yip proteins are involved in the intracellular traffic between the ER and the Golgi, here we investigated the precise localization of Yif1B in HeLa cells. We found that Yif1B is not resident into the Golgi, but rather belongs to the IC compartment. After analyzing the role of Yif1B in protein transport, we showed that the traffic of the VSVG protein marker was accelerated in Yif1B depleted HeLa cells, as well as in hippocampal neurons from Yif1B KO mice. Conversely, Yif1B depletion in HeLa cells did not change the retrograde traffic of ShTx. Interestingly, in long term depletion of Yif1B as in Yif1B KO mice, we observed a disorganized Golgi architecture in CA1 pyramidal hippocampal neurons, which was confirmed by electron microscopy. However, because short term depletion of Yif1B did not change Golgi structure, it is likely that the implication of Yif1B in anterograde traffic does not rely on its role in structural organization of the Golgi apparatus, but rather on its shuttling between the ER, the IC and the Golgi compartments.   相似文献   
29.
Young plants of the two wheat cultivars Katya and Prelom, differing in their reaction to drought in the field, were grown in soil in pots, and their water status was assessed as well as the intensity of gas exchange, chlorophyll fluorescence, and accumulation of compatible solutes and hydrogen peroxide after 7 days of dehydration. It was established that cv. Katya displayed markedly better tolerance to soil drying in comparison with cv. Prelom. This was partly due to the more effective control of water balance, activity of the photosynthetic apparatus, and metabolic activity of leaves under stress. Consequently, lower amounts of hydrogen peroxide were accumulated and a lower membrane injury index was determined.  相似文献   
30.
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号