首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1465篇
  免费   130篇
  国内免费   1篇
  2023年   2篇
  2022年   7篇
  2021年   52篇
  2020年   17篇
  2019年   31篇
  2018年   46篇
  2017年   34篇
  2016年   60篇
  2015年   100篇
  2014年   99篇
  2013年   100篇
  2012年   113篇
  2011年   116篇
  2010年   68篇
  2009年   82篇
  2008年   92篇
  2007年   95篇
  2006年   83篇
  2005年   81篇
  2004年   84篇
  2003年   73篇
  2002年   65篇
  2001年   5篇
  2000年   7篇
  1999年   10篇
  1998年   11篇
  1997年   2篇
  1996年   7篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   2篇
  1985年   2篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1966年   1篇
  1960年   1篇
  1959年   1篇
  1943年   1篇
  1942年   3篇
  1939年   1篇
  1936年   1篇
  1935年   1篇
  1931年   1篇
  1930年   1篇
  1919年   1篇
  1915年   1篇
排序方式: 共有1596条查询结果,搜索用时 245 毫秒
101.
In this work, we report the implementation of interferometric second harmonic generation (SHG) microscopy with femtosecond pulses. As a proof of concept, we imaged the phase distribution of SHG signal from the complex collagen architecture of juvenile equine growth cartilage. The results are analyzed in respect to numerical simulations to extract the relative orientation of collagen fibrils within the tissue. Our results reveal large domains of constant phase together with regions of quasi-random phase, which are correlated to respectively high- and low-intensity regions in the standard SHG images. A comparison with polarization-resolved SHG highlights the crucial role of relative fibril polarity in determining the SHG signal intensity. Indeed, it appears that even a well-organized noncentrosymmetric structure emits low SHG signal intensity if it has no predominant local polarity. This work illustrates how the complex architecture of noncentrosymmetric scatterers at the nanoscale governs the coherent building of SHG signal within the focal volume and is a key advance toward a complete understanding of the structural origin of SHG signals from tissues.  相似文献   
102.
G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5′-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly conserved feature that is divided into three segments as follows: the C-lobe tether, the active-site tether (AST), and the N-lobe tether (NLT). This domain is fully resolved in GRK5 and reveals novel interactions with the nucleotide and N-lobe. Similar to other AGC kinases, the GRK5 AST is an integral part of the nucleotide-binding pocket, a feature not observed in other GRKs. The AST also mediates contact between the kinase N- and C-lobes facilitating closure of the kinase domain. The GRK5 NLT is largely displaced from its previously observed position in other GRKs. Moreover, although the autophosphorylation sites in the NLT are >20 Å away from the catalytic cleft, they are capable of rapid cis-autophosphorylation suggesting high mobility of this region. In summary, we provide a snapshot of GRK5 in a partially closed state, where structural elements of the kinase domain C-tail are aligned to form novel interactions to the nucleotide and N-lobe not previously observed in other GRKs.  相似文献   
103.
104.
105.
Genome-wide association studies (GWAS) are widely applied to analyze the genetic effects on phenotypes. With the availability of high-throughput technologies for metabolite measurements, GWAS successfully identified loci that affect metabolite concentrations and underlying pathways. In most GWAS, the effect of each SNP on the phenotype is assumed to be additive. Other genetic models such as recessive, dominant, or overdominant were considered only by very few studies. In contrast to this, there are theories that emphasize the relevance of nonadditive effects as a consequence of physiologic mechanisms. This might be especially important for metabolites because these intermediate phenotypes are closer to the underlying pathways than other traits or diseases. In this study we analyzed systematically nonadditive effects on a large panel of serum metabolites and all possible ratios (22,801 total) in a population-based study [Cooperative Health Research in the Region of Augsburg (KORA) F4, N = 1,785]. We applied four different 1-degree-of-freedom (1-df) tests corresponding to an additive, dominant, recessive, and overdominant trait model as well as a genotypic model with two degree-of-freedom (2-df) that allows a more general consideration of genetic effects. Twenty-three loci were found to be genome-wide significantly associated (Bonferroni corrected P ≤ 2.19 × 10−12) with at least one metabolite or ratio. For five of them, we show the evidence of nonadditive effects. We replicated 17 loci, including 3 loci with nonadditive effects, in an independent study (TwinsUK, N = 846). In conclusion, we found that most genetic effects on metabolite concentrations and ratios were indeed additive, which verifies the practice of using the additive model for analyzing SNP effects on metabolites.  相似文献   
106.
107.
Genetic factors may play an important role in species extinction but their actual effect remains poorly understood, particularly because of a strong and potentially masking effect expected from ecological traits. We investigated the role of genetics in mammal extinction taking both ecological and genetic factors into account. As a proxy for the role of genetics we used the ratio of the rates of nonsynonymous (amino acid changing) to synonymous (leaving the amino acid unchanged) nucleotide substitutions, Ka / Ks. Because most nonsynonymous substitutions are likely to be slightly deleterious and thus selected against, this ratio is a measure of the inefficiency of selection: if large (but less than 1), it implies a low efficiency of selection against nonsynonymous mutations. As a result, nonsynonymous mutations may accumulate and thus contribute to extinction. As a proxy for the role of ecology we used body mass W, with which most extinction‐related ecological traits strongly correlate. As a measure of extinction risk we used species’ affiliation with the five levels of extinction threat according to the IUCN Red List of Threatened Species. We calculated Ka / Ks for mitochondrial protein‐coding genes of 211 mammalian species, each of which was characterized by body mass and the level of threat. Using logistic regression analysis, we then constructed a set of logistic regression models of extinction risk on ln(Ka / Ks) and lnW. We found that Ka / Ks and body mass are responsible for a 38% and a 62% increase in extinction risk, respectively. Given that the standard error of these values is 13%, the contribution of genetic factors to extinction risk in mammals is estimated to be one‐quarter to one‐half of the total of ecological and genetic effects. We conclude that the effect of genetics on extinction is significant, though it is almost certainly smaller than the effect of ecological traits. Synthesis Mutation provides the material for evolution. However, most mutations that play a role in evolution are slightly deleterious and thus may contribute to extinction. We assess the role of mitochondrial DNA mutations in mammalian extinction risk and find it to be one‐quarter to one‐half of the total of mutation and body mass effects, where body mass represents an integral measure of extinction‐related ecological traits. Genetic factors may be all the more important, because ecological traits associated with large body mass would both promote and protect from extinction, while mutation accumulation caused by low effective population size seems to have no counterbalance.  相似文献   
108.

Background

Hormone-refractory prostate cancer (HRPC), which is resistant to hormone therapy, is a major obstacle in clinical treatment. An approach to inhibit HRPC growth and ultimately to kill cancers is highly demanded.

Results

KUD773 induced the anti-proliferative effect and subsequent apoptosis in PC-3 and DU-145 (two HRPC cell lines); whereas, it showed less active in normal prostate cells. Further examination showed that KUD773 inhibited tubulin polymerization and induced an increase of mitotic phosphoproteins and polo-like kinase 1 (PLK1) phosphorylation, indicating a mitotic arrest of the cell cycle through an anti-tubulin action. The kinase assay demonstrated that KUD773 inhibited Aurora A activity. KUD773 induced an increase of Cdk1 phosphorylation at Thr161 (a stimulatory phosphorylation site) and a decrease of phosphorylation at Tyr15 (an inhibitory phosphorylation site), suggesting the activation of Cdk1. The data were substantiated by an up-regulation of cyclin B1 (a Cdk1 partner). Furthermore, KUD773 induced the phosphorylation and subsequent down-regulation of Bcl-2 and activation of caspase cascades.

Conclusions

The data suggest that KUD773 induces apoptotic signaling in a sequential manner. It inhibits tubulin polymerization associated with an anti-Aurora A activity, leading to Cdk1 activation and mitotic arrest of the cell cycle that in turn induces Bcl-2 degradation and a subsequent caspase activation in HRPCs.  相似文献   
109.
While enteral nutrition is the basis for the critically ill, parenteral nutrition is often used when a sufficient enteral nutrition is not or not fully achievable. Lipids are a mainstay of caloric supply in both cases as they combine the provision of building blocks for the membranes and are precursors for function molecules including lipid mediators bearing the ability to influence immunity. Pro-inflammatory lipid mediators as prostaglandins and leukotrienes are generated from arachidonic acid (AA), a key member of the n-6 polyunsaturated fatty acids (PUFA). In contrast, lipid mediators derived from the n-3 fatty acids eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) may exhibit less inflammatory properties compared to their AA-derived counterparts. Furthermore, intercellular mediators as resolvins and protectins are generated from n-3 fatty acids. They induce the resolution of inflammation, hence the name resolution phase interaction product—resolvin. Modulating the amount of PUFA and the n-6/n-3 ratio were investigated as means to change the inflammatory response and improve the outcome of patients. Experimental data showed that n-3 fatty acids may improve acute lung injury and sepsis in animal models. Studies in patients undergoing major surgery with application of n-3 fatty acids demonstrated beneficial effects in terms of reduction of length of stay and infectious complications. Clinical data hints that this concept may also improve outcome in critically ill patients. Additionally, experimental and clinical data suggest that a reduction in n-6 PUFA may change the immune response. In conclusion, modulating the amount of PUFA, the n-6/n-3 ratio and the composition of lipid emulsions may prove to be a useful means to improve the outcome of critically ill patients.  相似文献   
110.
Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号