首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   45篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   8篇
  2014年   12篇
  2013年   20篇
  2012年   28篇
  2011年   30篇
  2010年   15篇
  2009年   13篇
  2008年   19篇
  2007年   35篇
  2006年   13篇
  2005年   25篇
  2004年   15篇
  2003年   19篇
  2002年   25篇
  2001年   10篇
  2000年   10篇
  1999年   13篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1983年   2篇
  1979年   3篇
  1978年   4篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1970年   1篇
  1969年   5篇
  1968年   2篇
  1962年   1篇
  1934年   1篇
排序方式: 共有435条查询结果,搜索用时 395 毫秒
61.
While searching for a phospholipase C (PLC) specific for phosphatidylcholine in mammalian tissues, we came across such an activity originating from a contamination of Pseudomonas fluorescens. This psychrophilic bacterium was found to contaminate placental extracts upon processing in the cold. The secreted phosphatidylcholine-hydrolyzing PLC was purified by a combination of chromatographic procedures. As substrates, the enzyme preferred dipalmitoyl-phosphatidylcholine and 1-palmitoyl-2-arachidonoyl-phosphatidylcholine over phosphatidylinositol. The active enzyme is a monomer of approximately 40 kDa. As for other bacterial PLCs, the enzyme requires Ca2+ and Zn2+ for activity; dithiothreitol affected the activity due to its chelation of Zn2+, but this inhibition could be compensated for by addition of ZnCl2. The compound D609, described to selectively inhibit phosphatidylcholine-specific PLCs, caused half-inhibition of the P. fluorescens enzyme at approximately 420 microM, while 50-fold lower concentrations similarly affected PLCs from Bacillus cereus and Clostridium perfringens. Partial peptide sequences obtained from the pure P. fluorescens enzyme after tryptic cleavage were used to clone a DNA fragment of 3.5 kb from a P. fluorescens gene library prepared from our laboratory isolate. It contains an ORF of 1155 nucleotides encoding the PLC. There is no significant sequence homology to other PLCs, suggesting that the P. fluorescens enzyme represents a distinct subclass of bacterial PLCs. The protein lacks cysteine residues and consequently contains no disulfide bonds. Interestingly, P. fluorescens reference strain DSMZ 50090 is devoid of the PLC activity described here as well as of the relevant coding sequence.  相似文献   
62.
63.
In this study, the temporal shape of voice-induced nitric oxide (NO) signals in exhaled air has been investigated in eight healthy individuals by means of laser magnetic resonance spectroscopy. The results of the experimental part have been compared with calculated signals obtained by using a simple one-compartment model of the paranasal sinuses. In the experimental part, a rapidly increasing NO concentration has been found when the subjects started humming. After reaching a maximum, the emission starts to decrease with the shape of an exponential decay and finally reaches a constant level. The time constant of this decay (NO washout) is 3.0 +/- 1.2 s. The peak height of the NO emission during humming increases when the time between two humming processes increases. When no voice-induced NO emission takes place, the NO concentration in the paranasal sinuses rebuilds again to a maximum concentration. The typical time constant for the NO recovery is 4.5 +/- 3.2 min. A three-compartment model defining exactly the geometry and anatomy of the paranasal sinuses has been developed that is based on three main assumptions of the NO dynamics: 1) constant NO production of the epithelium in the sinuses; 2) the rate of the chemical reaction of NO with the epithelium of the paranasal sinuses is proportional to the NO concentration; and 3) the emission of NO from the sinuses (volume/s) is proportional to the NO concentration. It is shown that the three-compartment model under the experimental conditions can be reduced to a one-compartment model, which describes the complete temporal behavior of the NO exchange.  相似文献   
64.
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
65.
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.The biopolymer sporopollenin is the major component of the outer walls in pollen and spores (exines). It is highly resistant to nonoxidative physical, chemical, and biological treatments and is insoluble in both aqueous and organic solvents. While the stability and resistance of sporopollenin account for the preservation of ancient pollen grains for millions of years with nearly full retention of morphology (Doyle and Hickey, 1976; Friis et al., 2001), these same qualities make it extremely difficult to study the chemical structure of sporopollenin. Thus, although the first studies on the composition of sporopollenin were reported in 1928 (Zetzsche and Huggler, 1928), the exact structure of sporopollenin remains unresolved. At present, it is thought that sporopollenin is a complex polymer primarily made of a mixture of fatty acids and phenolic compounds (Guilford et al., 1988; Wiermann et al., 2001).Fatty acids were first implicated as sporopollenin components when ozonolysis of Lycopodium clavatum and Pinus sylvestris exine yielded significant amounts of straight- and branched-chain monocarboxylic acids, characteristic fatty acid breakdown products (Shaw and Yeadon, 1966). More recently, improved purification and degradation techniques coupled with analytical methods, such as solid-state 13C-NMR spectroscopy, Fourier transform infrared spectroscopy, and 1H-NMR, have shown that sporopollenin is made up of polyhydroxylated unbranched aliphatic units and also contains small amounts of oxygenated aromatic rings and phenylpropanoids (Guilford et al., 1988; Ahlers et al., 1999; Domínguez et al., 1999; Bubert et al., 2002). Biochemical studies using thiocarbamate herbicide inhibition of the chain-elongating steps in the synthesis of long-chain fatty acids and radioactive tracer experiments provided further evidence that lipid metabolism is involved in the biosynthesis of sporopollenin (Wilwesmeier and Wiermann, 1995; Meuter-Gerhards et al., 1999).Relatively little is known about the genetic network that determines sporopollenin synthesis. However, several Arabidopsis (Arabidopsis thaliana) genes implicated in exine biosynthesis encode proteins with sequence homology to enzymes that are involved in fatty acid metabolism. Mutations in MALE STERILITY2 (MS2) eliminate exine and affect a protein with sequence similarity to fatty acyl reductases; the predicted inability of ms2 plants to reduce pollen wall fatty acids to the corresponding alcohols suggests that this reaction is a key step in sporopollenin synthesis (Aarts et al., 1997). The FACELESS POLLEN1 (FLP1) gene, whose loss causes the flp1 exine defect, encodes a protein similar to those involved in wax synthesis (Ariizumi et al., 2003). The no exine formation1 (nef1) mutant accumulates reduced levels of lipids, and the NEF1 protein was suggested to be involved in either lipid transport or the maintenance of plastid membrane integrity, including those plastids in the secretory tapetum of anthers, where many of the sporopollenin components are synthesized (Ariizumi et al., 2004). The dex2 mutant has mutations in the evolutionarily conserved anther-specific cytochrome P450, CYP703A2 (Morant et al., 2007), which catalyzes in-chain hydroxylation of saturated medium-chain fatty acids, with lauric acid (C12:0) as a preferred substrate (Morant et al., 2007). A recently described gene, ACOS5, encodes a fatty acyl-CoA synthetase that has in vitro preference for medium-chain fatty acids (de Azevedo Souza et al., 2009). Mutations in all of these genes compromise exine formation.Here, we describe an evolutionarily conserved cytochrome P450, CYP704B1, and demonstrate that this gene is essential for exine biosynthesis and plays a role different from that of CYP703A2. Heterologously expressed CYP704B1 catalyzed ω-hydroxylation of several saturated and unsaturated C14-C18 fatty acids. These results suggest the possibility that ω-hydroxylated fatty acids produced by CYP704B1, together with in-chain hydroxylated lauric acids provided by the action of CYP703A2, may serve as key monomeric aliphatic building blocks in sporopollenin formation. Analyses of the genetic relationships between CYP704B1, MS2, and CYP703A2 suggest that all three genes are involved in the same pathway within the sporopollenin biosynthesis framework.  相似文献   
66.
Pollination in species with dry stigmas begins with the hydration of desiccated pollen grains on the stigma, a highly regulated process involving the proteins and lipids of the pollen coat and stigma cuticle. Self-incompatible species of the Brassicaceae block pollen hydration, and while the early signaling steps of the self-incompatibility response are well studied, the precise mechanisms controlling pollen hydration are poorly understood. Both lipids and proteins are important for hydration; loss of pollen coat lipids and proteins results in defective or delayed hydration on the stigma surface. Here, we examine the role of the pollen coat protein extracellular lipase 4 (EXL4), in the initial steps of pollination, namely hydration on the stigma. We identify a mutant allele, exl4-1, that shows a reduced rate of pollen hydration. exl4-1 pollen is normal with respect to pollen morphology and the downstream steps in pollination, including pollen tube germination, growth, and fertilization of ovules. However, owing to the delay in hydration, exl4-1 pollen is at a disadvantage when competed with wild-type pollen. EXL4 also functions in combination with GRP17 to promote the initiation of hydration. EXL4 is similar to GDSL lipases, and we show that it functions in hydrolyzing ester bonds. We report a previously unknown function for EXL4, an abundant pollen coat protein, in promoting pollen hydration on the stigma. Our results indicate that changes in lipid composition at the pollen–stigma interface, possibly mediated by EXLs, are required for efficient pollination in species with dry stigmas.  相似文献   
67.
Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired. In vitro phosphorylation assays employing Dlk and Par-4 phosphorylation mutants carrying alanine substitutions for residues S154, T155, S220, or S249, respectively, identified T155 as the major Par-4 phosphorylation site of Dlk. Coexpression experiments in REF52.2 cells revealed that phosphorylation of Par-4 at T155 by Dlk was essential for apoptosis induction in vivo. In the presence of the Par-4 T155A mutant Dlk was partially recruited to actin filaments but resided mainly in the nucleus. Consequently, apoptosis was not induced in Dlk/Par-4 T155A–expressing cells. In vivo phosphorylation of Par-4 at T155 was demonstrated with a phospho-specific Par-4 antibody. Our results demonstrate that Dlk-mediated phosphorylation of Par-4 at T155 is a crucial event in Dlk/Par-4-induced apoptosis.  相似文献   
68.
The postembryonic antennal development and life cycle of a member of the insect order Mantophasmatodea (Lobatophasma redelinghuysense) was investigated using a series of annulus counts and a time sequence of head capsule measurements. The life cycle comprised six instars. Females achieved significantly larger head capsules from instar 2 onwards, resulting in adult females having a larger mean head capsule diameter (2.58 mm) than males (2.27 mm). Antennae of first instar larvae comprised a smooth four-segmented basiflagellum and a seven-segmented, sensilla-rich distiflagellum. Lengthening of the basiflagellum was achieved by the addition of two annuli per moult, generated by division of the basal annulus (meriston). Annulus number and the unique annulation pattern of the distiflagellum remained constant until adulthood. The segmentation pattern of adult antennae (comprising a basiflagellum and a distiflagellum of 14 and seven annuli respectively) and mode of antennal elongation was consistent for all 11 species examined. Subdivisions in basiflagellar annuli were observed in adults of all species examined, although they are not considered to be true annular divisions. The structure of the mantophasmatodean antenna appears to be autapomorphic within Insecta, bearing little resemblance to that of Grylloblattodea, Dictyoptera or Phasmatodea, all putative sister groups of the Mantophasmatodea. However, the mode of flagellar elongation most closely resembles that of Isoptera, Blattaria and Dermaptera.  相似文献   
69.
Recently, GnRH antagonists (GnRHant) like cetrorelix and ganirelix have been introduced in protocols of controlled ovarian hyperstimulation for assisted reproductive techniques to prevent premature luteinizing hormone (LH) surges. Here we tested, whether the actions of cetrorelix and the GnRH agonist (GnRHag) triptorelin in gonadotrophs are dependent on the steroid milieu. Furthermore, we characterized the actions of cetrorelix and triptorelin on LH secretion and the total LH pool. Female rat pituitary cells were treated either with 0.1 nM triptorelin for 1, 2, 4 and 6 days or for 1, 3, 5 and 6 h or with 1, 10 or 100 nM cetrorelix for 1, 2, 3 and 5 h or for 10 min. Cells were stimulated for 3h with different concentrations of GnRH (10 pM-1 microM). For analysis of the total LH pool, which is composed of stored and released LH, cells were lysed with 0.1% Triton X-100 at -80 degrees C overnight. To test, whether the steroid milieu affects the actions of cetrorelix and triptorelin, cells were incubated for 52 h with 1 nM estradiol (E) alone or with combinations of 100 nM progesterone (P) for 4 or 52 h, respectively. Cells were then treated with 0.1 nM triptorelin for 9 h or 1 nM cetrorelix for 3 h and stimulated for 3 h with different concentrations of GnRH (10 pM-1 microM). The suppressive effect of triptorelin on LH secretion was fully accomplished after 3 h of treatment, for cetrorelix only 10 min were sufficient. The concentration of cetrorelix must be at least equimolar to GnRH to block LH secretion. Cetrorelix shifted the EC50s of the GnRH dose-response curve to the right. Triptorelin suppressed total LH significantly (from 137 to 36 ng/ml) after 1 h in a time-dependent manner. In contrast, only high concentrations of cetrorelix increased total LH. In steroid treated cells the suppressive effects of triptorelin were more distinct. One nanomolar cetrorelix suppressed GnRH-stimulated LH secretion of cells not treated with steroids from 10.1 to 3.5 ng/ml. In cells, additionally treated with estradiol alone or estradiol and short-term progesterone, LH levels were higher (from 3.5 to 5.4 or 4.5 ng/ml, respectively). In cells co-treated with estradiol and progesterone for 52 h LH secretion was only suppressed from 10.1 to 9.5 ng/ml. Steroid treatments diminished the suppressive effect of cetrorelix on LH secretion. In conclusion, the depletion of the total LH pool contributes to the desensitizing effect of triptorelin. The actions of cetrorelix and triptorelin are dependent on the steroid milieu.  相似文献   
70.
Xenotransplantation of pig organs is complicated by the existence of polytropic replication-competent porcine endogenous retroviruses (PERV) capable of infecting human cells. The potential for recombination between ecotropic PERV-C and human-tropic PERV-A and PERV-B adds another level of infectious risk. Proviral PERV-C were characterized in MAX-T cells derived from d/d haplotype miniature swine. Three proviruses were cloned from a genomic library. Clone PERV-C(1312) generated infectious particles after transfection into porcine ST-IOWA cells. Electron microscopy revealed the same morphologies of virions in MAX-T cells and in ST-IOWA cells infected with cell-free PERV-C(1312) particles, indicating that MAX-T cells harbor one functional PERV-C provirus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号