首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12171篇
  免费   969篇
  国内免费   8篇
  2021年   135篇
  2020年   107篇
  2019年   115篇
  2018年   134篇
  2017年   137篇
  2016年   257篇
  2015年   426篇
  2014年   474篇
  2013年   622篇
  2012年   775篇
  2011年   726篇
  2010年   509篇
  2009年   447篇
  2008年   678篇
  2007年   728篇
  2006年   657篇
  2005年   647篇
  2004年   655篇
  2003年   633篇
  2002年   639篇
  2001年   139篇
  2000年   125篇
  1999年   179篇
  1998年   187篇
  1997年   147篇
  1996年   117篇
  1995年   155篇
  1994年   159篇
  1993年   137篇
  1992年   126篇
  1991年   136篇
  1990年   98篇
  1989年   108篇
  1988年   83篇
  1987年   90篇
  1986年   76篇
  1985年   111篇
  1984年   110篇
  1983年   85篇
  1982年   107篇
  1981年   99篇
  1980年   74篇
  1979年   71篇
  1978年   68篇
  1977年   60篇
  1976年   48篇
  1975年   54篇
  1974年   48篇
  1973年   60篇
  1971年   51篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Neuronal exocytosis is mediated by a Ca2+-triggered membrane fusion event that joins synaptic vesicles and presynaptic membrane. In this event, synaptotagmin I plays a key role as a Ca2+ sensor protein that binds to and bends the presynaptic membrane with its C2B domain, and thereby initiates membrane fusion. We report free energy calculations according to which C2B-induced membrane bending is preceded by a Ca2+- and membrane-dependent conformational transition. In this transition C2B attaches to the membrane, moves its C-terminal helix from the orientation seen in the available (but membrane-free) crystal/NMR structures as pointing away from the membrane (helix-up), to an orientation pointing toward the membrane (helix-down). In the C2B helix-down state, lipid tails in the proximal membrane bilayer leaflet interact with the moved helix and become disordered, whereas tails in the distal leaflet, to keep in contact with the proximal leaflet, become stretched and ordered. The difference in lipid tail packing between the two leaflets results in an imbalance of pressure across the membrane, and thereby causes membrane bending. The lipid-disordering monitored in the simulations is well suited to facilitate Ca2+-triggered membrane fusion.  相似文献   
992.
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the “random forest” ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.  相似文献   
993.
994.
Cardiovascular autonomic neuropathy causes abnormalities in the diabetic heart with various clinical sequelae, including exercise intolerance, arrhythmias and painless myocardial infarction. Little is known about (ultra)structural alterations of the myocardial nervous network. On the assumption that this diabetes-specific neuropathy develops due to permanently increased oxidative stress by liberation of oxygen-free radicals, adjuvant application of antioxidative therapeutics appears promising in preventing or delaying long-term diabetic complications. We have investigated the effects of Ginkgo biloba extract (EGb 761), a radical scavenger, against diabetes-induced myocardial nervous damage in spontaneously diabetic BioBreeding/Ottawa Karlsburg (BB/OK) rats. Morphological and morphometric parameters were evaluated by electron microscopy. We used immunohistochemistry to investigate protein expression of protein gene product 9.5, S100 protein, and thyroxin hydroxylase as a neuronal marker. Alterations of cardiac sympathetic activity were measured using the in vivo 123I-metaiodobenzyl-guanidine imaging, and the immunofluorescent labeling of beta1-adrenergic receptors and adenylate cyclase. Our results revealed that A) Diabetes results in slight to moderate ultrastructural alterations (hydrops, disintegration of substructure) of autonomic nerve fibers and related Schwann cells in untreated BB diabetic rats; B) Cardiac sympathetic integrity and activity is impaired due to alterations in the presynaptic nerve terminals and the postsynaptic ?1-AR-AC coupling system; C) Pre-treatment of diabetic myocardium with EGb results in an improvement of most of these parameters compared to unprotected myocardium. In conclusion, EGb may act as a potent therapeutic adjuvant in diabetics with respect to cardiovascular autonomic neuropathy, which may contribute to the prevention of late complications in diabetes.  相似文献   
995.
Functional asymmetry of G‐protein‐coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT1 receptor, which directly and constitutively couples to Gi proteins and the regulator of G‐protein signalling (RGS) 20. The molecular organization of the ternary MT1/Gi/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of Gi and the RGS domain, we propose a model wherein one Gi and one RGS20 protein bind to separate protomers of MT1 dimers in a pre‐associated complex that rearranges upon agonist activation. This model was further validated with MT1/MT2 heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR‐interacting proteins.  相似文献   
996.
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.  相似文献   
997.
Combined genetic and morphological data indicate frequent hybridisation between the wood ants Formica polyctena Förster 1850 and F. rufa Linnaeus 1761 in Central Europe. The genetic and morphological traits give a concordant picture of hybridisation with a strong correlation between the genotypic admixture proportions at 19 microsatellite loci and the first vectors of a principal component analysis (P < 0.001) and of a 3-class discriminant analysis (P < 0.001) of 15 quantitative morphological characters. This integrative approach enabled a grouping into F. polyctena, the hybrid and rufa. Genetic differentiation between the hybrid and F. rufa is significantly larger than between the hybrid and polyctena, indicating gene flow mainly between the latter entities. A suggested gene flow bias towards F. polyctena agrees with differential queen acceptance and mating behaviour. Both genetic and phenotypic colony parameters indicate predominance of monogyny in F. rufa but of polygyny in polyctena and the hybrid. Hybrids are intermediate between the parental species in body size, diagnostic morphological characters, monogyny frequency, size of nest population, nest diameter and infestation rate with epizootic fungi. The three entities respond differently to woodland fragmentation. Hybrids are significantly more abundant in forests with a coherent area <300 ha than in woodland above this size. Regions with high hybrid frequency in Germany—the Eastern Oberlausitz (23%) and the Baltic Sea islands Darss, Hiddensee and Rügen (28%)—are characterised by a fragmented woodland structure whereas regions with low hybrid frequency—Brandenburg and the lower Erzgebirge (3.4%)—have clearly larger and more coherent forest systems. Data from other European countries indicate habitat fragmentation to be a facilitating factor but no essential precondition for interspecific hybridisation in these ants. Hybrids are hypothesised to have selective advantage in fragmented systems because of combining the main reproductive and dispersal strategies of the parental species.  相似文献   
998.
Engagement of the T-cell receptor (TCR) in human primary T cells activates a cyclic AMP (cAMP)-protein kinase A (PKA)-Csk inhibitory pathway that prevents full T-cell activation in the absence of a coreceptor stimulus. Here, we demonstrate that stimulation of CD28 leads to recruitment to lipid rafts of a β-arrestin/phosphodiesterase 4 (PDE4) complex that serves to degrade cAMP locally. Redistribution of the complex from the cytosol depends on Lck and phosphatidylinositol 3-kinase (PI3K) activity. Protein kinase B (PKB) interacts directly with β-arrestin to form part of the supramolecular complex together with sequestered PDE4. Translocation is mediated by the PKB plextrin homology (PH) domain, thus revealing a new role for PKB as an adaptor coupling PI3K and cAMP signaling. Functionally, PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production, leading to recruitment of the supramolecular PKB/β-arrestin/PDE4 complex to the membrane via the PKB PH domain, results in degradation of the TCR-induced cAMP pool located in lipid rafts, thereby allowing full T-cell activation to proceed.T-cell receptor (TCR) stimulation alone is insufficient for activation of T cells, and sustainable T-cell immune responses require a second signal in addition to the TCR-mediated signal. The second signal is typically elicited by ligands B7-1 or B7-2 on antigen-presenting cells engaging the coreceptor CD28 to prevent anergy and apoptosis and enhancing interleukin-2 (IL-2) production and clonal expansion (4). Although CD28 plays a central role in T-cell activation in vivo (5), relatively little is known about the molecular basis for the increased efficacy of T-cell activation upon TCR and CD28 costimulation. Involvement of Lck, Itk, phosphatidylinositol 3-kinase (PI3K), SLP-76, Vav-1, and phospholipase C-γ (PLC-γ) has, however, been reported (43). CD28-mediated signals are transmitted via a short intracellular stretch in the receptor containing a conserved YMNM motif (32). Phosphorylation of Tyr173 in this motif by Lck and Fyn following CD28 ligation is key to efficient signal transduction (41), generating a binding site for the SH2 domain of the p85 regulatory subunit of PI3K (37, 40). CD28 may also contribute to TCR-dependent PI3K activity without recruiting PI3K directly (18). Whether engagement of CD28 alone can also induce PI3K activity has been a matter of controversy. However, recent reports confirming phosphorylation of the protein kinase B (PKB) substrate glycogen synthase kinase 3 (GSK3) upon CD28 ligation has demonstrated that this is indeed the case (6, 15). In addition, CD28 can recruit growth factor receptor-bound protein 2 (Grb2), and such association of Grb2 occurs via the phosphorylated YMNM motif as well as via the C-terminal PXXP motif (22, 35). The PXXP motif also binds and regulates Src family kinases (SFKs) (21, 47), and knock-in mice mutated in this motif were recently reported to have impaired IL-2 secretion (16).Ligation of the TCR induces cyclic AMP (cAMP) production (27). However, the significance of this observation is still not fully understood, as it is well established that cAMP potently inhibits T-cell function and proliferation (2, 45, 46, 50). The spatiotemporal dynamics of the activation-induced cAMP gradient also are not completely appreciated. We have previously shown that cAMP is rapidly produced in lipid rafts following engagement of the TCR in primary T cells (3). This activates a pool of PKA type I targeted to rafts by association with the anchoring protein Ezrin, forming part of a supramolecular complex where Ezrin, EBP50, and PAG provide a scaffold that is able to coordinate PKA phosphorylation and activation of Csk, thereby inhibiting T-cell activation (44, 50). In addition, we have demonstrated that CD3/CD28 costimulation leads to recruitment of type 4 phosphodiesterase (PDE4) isoforms to rafts, resulting in degradation of the TCR-induced cAMP pool (3). Thus, we envisage that TCR-induced cAMP production constitutes a negative feedback loop capable of abrogating T-cell activation in the absence of a second signal. In order then to allow full T-cell activation to proceed, cAMP-mediated inhibition must be lifted. This appears to occur in the presence of a costimulus involving CD28 acting to trigger recruitment of PDE4 to lipid rafts, thereby degrading cAMP at this spatially critical location and resulting in an overriding positive feed-forward signal rather than the negative feedback loop activated from the TCR. In addition, a recent publication by Conche et al. has also found a possible stimulatory effect of cAMP, as the paper surprisingly showed that a transient cAMP increase shortly after TCR triggering may potentiate the calcium component of the TCR signaling. This could constitute a positive feed-forward in addition to the negative feedback signal by cAMP (12).Spatial organization and recruitment of mediators of specific pathways as outlined above are essential to ensure signaling specificity and amplification. Among the many protein scaffolds linking effector molecules into linear pathways, β-arrestins have been reported to confer cross talk with a growing list of molecules important in cellular trafficking and signal transduction, including Src family members and mitogen-activated protein (MAP) kinases (reviewed in reference 14). The arrestins were first identified as having a role in desensitization of G protein-coupled receptors (GPCRs) (9); later, they were discovered to be involved in receptor internalization by interacting with clathrin and AP-2, thereby bringing activated receptors to clathrin-coated pits for endocytosis (19, 26). A role for β-arrestin in the spatially localized degradation of cAMP by scaffolding PDE4 isoforms to the proximity of cAMP generation at the plasma membrane has also been suggested (3, 7, 30, 38).In the present study, we uncover a novel pathway that defines how T-cell costimulation elicits recruitment of PDE4 to lipid rafts to overcome cAMP-mediated inhibition of T-cell activation. This pathway is initiated by CD28 engagement leading to PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production and resulting in recruitment of a supramolecular complex of PKB/β-arrestin/PDE4 targeted to the plasma membrane due to sequestration via the PKB plextrin homology (PH) domain. Functionally, this pathway is essential for CD28 costimulation to strengthen and sustain T-cell immune responses.  相似文献   
999.
The RNA binding protein CPEB (cytoplasmic polyadenylation element binding) regulates cytoplasmic polyadenylation and translation in germ cells and the brain. In neurons, CPEB is detected at postsynaptic sites, as well as in the cell body. The related CPEB3 protein also regulates translation in neurons, albeit probably not through polyadenylation; it, as well as CPEB4, is present in dendrites and the cell body. Here, we show that treatment of neurons with ionotropic glutamate receptor agonists causes CPEB4 to accumulate in the nucleus. All CPEB proteins are nucleus-cytoplasm shuttling proteins that are retained in the nucleus in response to calcium-mediated signaling and alpha-calcium/calmodulin-dependent kinase protein II (CaMKII) activity. CPEB2, -3, and -4 have conserved nuclear export signals that are not present in CPEB. CPEB4 is necessary for cell survival and becomes nuclear in response to focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose. Further analysis indicates that nuclear accumulation of CPEB4 is controlled by the depletion of calcium from the ER, specifically, through the inositol-1,4,5-triphosphate (IP3) receptor, indicating a communication between these organelles in redistributing proteins between subcellular compartments.  相似文献   
1000.
Caspase activation is a hallmark of apoptosis. However, the molecular mechanisms underlying the regulation of caspase-8 activation within the extrinsic death pathway are not well understood. In this study, we demonstrate that procaspase-8 is phosphorylated in mitotic cells by Cdk1/cyclin B1 on Ser-387, which is located at the N terminus of the catalytic subunit p10. This phosphorylation of procaspase-8 on Ser-387 occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. Furthermore, RNA interference-mediated silencing of cyclin B1 or treatment with the Cdk1 inhibitor RO-3306 enhances the Fas-mediated activation and processing of procaspase-8 in mitotic cells. A nonphosphorylatable procaspase-8 (S387A) facilitates Fas-induced apoptosis during mitosis. Our findings suggest that Cdk1/cyclin B1 activity shields human cells against extrinsic death stimuli and unravel the molecular details of the cross talk between cell cycle and extrinsic apoptotic pathways. Finally, this new mechanism may also contribute to tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号