首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7214篇
  免费   806篇
  国内免费   2篇
  2022年   35篇
  2021年   123篇
  2020年   71篇
  2019年   84篇
  2018年   98篇
  2017年   103篇
  2016年   182篇
  2015年   280篇
  2014年   309篇
  2013年   381篇
  2012年   447篇
  2011年   467篇
  2010年   315篇
  2009年   239篇
  2008年   333篇
  2007年   375篇
  2006年   317篇
  2005年   322篇
  2004年   293篇
  2003年   337篇
  2002年   278篇
  2001年   208篇
  2000年   171篇
  1999年   167篇
  1998年   109篇
  1997年   83篇
  1996年   83篇
  1995年   84篇
  1994年   72篇
  1993年   79篇
  1992年   123篇
  1991年   107篇
  1990年   98篇
  1989年   90篇
  1988年   86篇
  1987年   60篇
  1986年   85篇
  1985年   77篇
  1984年   59篇
  1983年   64篇
  1982年   52篇
  1981年   57篇
  1980年   58篇
  1979年   48篇
  1978年   43篇
  1977年   34篇
  1976年   45篇
  1974年   38篇
  1973年   41篇
  1968年   35篇
排序方式: 共有8022条查询结果,搜索用时 15 毫秒
951.
952.
This report summarizes major changes in previously published protocols for DNA extraction to improve the quality of DNA extracted from plants. Here, we highlight the critical modifications in the original protocols. The efficiency of these changes results in high-quality DNA ready to use in a variety of phytogenetically distant plant families, in particular species with mucopolysaccharides. The DNA obtained can be used without further purification in various molecular biology assays, including direct sequencing and AFLP and RAPD (random-amplified polymorphic DNA) analyses. The effectiveness of this method is proven by the amplification and sequencing of PCR products of up to 1 kb with DNA extracted from herbarium tissue ≥60 years old. This versatility is not usually found in DNA extraction protocols. In addition, this method is quick, adaptable to standard laboratories, and most important, safer and more cost-effective.  相似文献   
953.
Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial-temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for the characterization of modified proteins via amino acid sequencing and specific detection of posttranslationally modified amino acid residues. Large-scale, quantitative analysis of proteins by MS/MS is beginning to reveal novel patterns and functions of PTMs in cellular signaling networks and biomolecular structures.  相似文献   
954.
Focal adhesions are specialized regions of the cell surface where integrin receptors and associated proteins link the extracellular matrix to the actin cytoskeleton. To define the cellular role of the focal adhesion protein zyxin, we characterized the phenotype of fibroblasts in which the zyxin gene was deleted by homologous recombination. Zyxin-null fibroblasts display enhanced integrin-dependent adhesion and are more migratory than wild-type fibroblasts, displaying reduced dependence on extracellular matrix cues. We identified differences in the profiles of 75- and 80-kD tyrosine-phosphorylated proteins in the zyxin-null cells. Tandem array mass spectrometry identified both modified proteins as isoforms of the actomyosin regulator caldesmon, a protein known to influence contractility, stress fiber formation, and motility. Zyxin-null fibroblasts also show deficits in actin stress fiber remodeling and exhibit changes in the molecular composition of focal adhesions, most notably by severely reduced accumulation of Ena/VASP proteins. We postulate that zyxin cooperates with Ena/VASP proteins and caldesmon to influence integrin-dependent cell motility and actin stress fiber remodeling.  相似文献   
955.
Mgm1p is a conserved dynamin-related GTPase required for fusion, morphology, inheritance, and the genome maintenance of mitochondria in Saccharomyces cerevisiae. Mgm1p undergoes unconventional processing to produce two functional isoforms by alternative topogenesis. Alternative topogenesis involves bifurcate sorting in the inner membrane and intramembrane proteolysis by the rhomboid protease Pcp1p. Here, we identify Ups1p, a novel mitochondrial protein required for the unique processing of Mgm1p and for normal mitochondrial shape. Our results demonstrate that Ups1p regulates the sorting of Mgm1p in the inner membrane. Consistent with its function, Ups1p is peripherally associated with the inner membrane in the intermembrane space. Moreover, the human homologue of Ups1p, PRELI, can fully replace Ups1p in yeast cells. Together, our findings provide a conserved mechanism for the alternative topogenesis of Mgm1p and control of mitochondrial morphology.  相似文献   
956.
Glucose-stimulated insulin secretion (GSIS) from pancreatic islet beta-cells is central to control of mammalian fuel homeostasis. Glucose metabolism mediates GSIS in part via ATP-regulated K+ (KATP) channels, but multiple lines of evidence suggest participation of other signals. Here we investigated the role of cytosolic NADP-dependent isocitrate dehydrogenase (ICDc) in control of GSIS in beta-cells. Delivery of small interfering RNAs specific for ICDc caused impairment of GSIS in two independent robustly glucose-responsive rat insulinoma (INS-1-derived) cell lines and in primary rat islets. Suppression of ICDc also attenuated the glucose-induced increments in pyruvate cycling activity and in NADPH levels, a predicted by-product of pyruvate cycling pathways, as well as the total cellular NADP(H) content. Metabolic profiling of eight organic acids in cell extracts revealed that suppression of ICDc caused increases in lactate production in both INS-1-derived cell lines and primary islets, consistent with the attenuation of pyruvate cycling, with no significant changes in other intermediates. Based on these studies, we propose that a pyruvate cycling pathway involving ICDc plays an important role in control of GSIS.  相似文献   
957.
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.  相似文献   
958.
Regulatory mechanisms involving CD8+ T cells (CD8 regulatory T cells (Tregs)) are important in the maintenance of immune homeostasis. However, the inability to generate functional CD8 Treg clones with defined Ag specificity has precluded a direct demonstration of CD8 Treg-mediated regulation. In the present study, we describe the isolation of functional lines and clones representing a novel population of TCRalphabeta+ Tregs that control activated Vbeta8.2+ CD4 T cells mediating experimental autoimmune encephalomyelitis. They express exclusively the CD8alphaalpha homodimer and recognize a peptide from a conserved region of the TCR Vbeta8.2 chain in the context of the Qa-1a (CD8alphaalpha Tregs). They secrete type 1 cytokines but not IL-2. CD8alphaalpha Tregs kill activated Vbeta8.2+ but not Vbeta8.2- or naive T cells. The CD8alphaalpha Tregs prevent autoimmunity upon adoptive transfer or following in vivo activation. These findings reveal an important negative feedback regulatory mechanism targeting activated T cells and have implications in the development of therapeutic strategies for autoimmune diseases and transplantation.  相似文献   
959.
Adipose tissue lipolysis provides circulating FFAs to meet the body's lipid fuel demands. FFA release is well regulated in normal-weight individuals; however, in upper-body obesity, excess lipolysis is commonly seen. This abnormality is considered a cause for at least some of the metabolic defects (dyslipidemia, insulin resistance) associated with upper-body obesity. "Normal" lipolysis is sex-specific and largely determined by the individual's resting metabolic rate. Women have greater FFA release rates than men without higher FFA concentrations or greater fatty acid oxidation, indicating that they have greater nonoxidative FFA disposal, although the processes and tissues involved in this phenomenon are unknown. Therefore, women have the advantage of having greater FFA availability without exposing their tissues to higher and potentially harmful FFA concentrations. Upper-body fat is more lipolytically active than lower-body fat in both women and men. FFA released by the visceral fat depot contributes only a small percentage of systemic FFA delivery. Upper-body subcutaneous fat is the dominant contributor to circulating FFAs and the source of the excess FFA release in upper-body obesity. We believe that abnormalities in subcutaneous lipolysis could be more important than those in visceral lipolysis as a cause of peripheral insulin resistance. Understanding the regulation of FFA availability will help to discover new approaches to treat FFA-induced abnormalities in obesity.  相似文献   
960.
Hypertriglyceridemia is considered a cardiovascular risk factor in diabetic and nondiabetic subjects. In this study, we aimed to determine potential regulators of very low density lipoprotein-triglyceride (TG) production. VLDL-TG kinetics were measured in 13 men and 12 women [body mass index [mean (range)]: 24.8 (20.2-35.6) kg/m(2)]. VLDL-TG production was assessed from the plasma decay of a bolus injection of ex vivo labeled VLDL particles ([1-(14)C]triolein-VLDL-TG). Similar VLDL-TG production (micromol/min) was found in men and women. VLDL-TG production was not significantly correlated with palmitate flux ([9,10-(3)H]palmitate) (r = 0.09, P = 0.67) or palmitate concentration (r = -0.29, P = 0.2) but was correlated significantly with fasting insulin concentration (r = 0.46, P < 0.05) and resting energy expenditure (REE) (r = 0.45, P < 0.05). The latter correlation improved when adjusted for sex. The best multivariate model with VLDL-TG production as the dependent variable and REE, body composition, hormones, and substrate levels as independent variables included fasting insulin (P = 0.02) and REE (P = 0.02) (r(2) = 0.32, P < 0.001). We conclude that VLDL kinetics are similar in men and women and that REE and plasma insulin are significant independent predictors of VLDL-TG production. FFA availability and body fat distribution are unrelated to VLDL production. We suggest that REE plays a greater role in VLDL-TG production than previously anticipated. REE and insulin should be taken into account when VLDL-TG production comparisons between groups are made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号