首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2239篇
  免费   218篇
  国内免费   1篇
  2023年   11篇
  2022年   7篇
  2021年   51篇
  2020年   30篇
  2019年   39篇
  2018年   41篇
  2017年   38篇
  2016年   79篇
  2015年   125篇
  2014年   128篇
  2013年   157篇
  2012年   157篇
  2011年   193篇
  2010年   131篇
  2009年   105篇
  2008年   113篇
  2007年   155篇
  2006年   98篇
  2005年   117篇
  2004年   124篇
  2003年   126篇
  2002年   103篇
  2001年   31篇
  2000年   11篇
  1999年   28篇
  1998年   20篇
  1997年   17篇
  1996年   13篇
  1995年   17篇
  1994年   18篇
  1993年   19篇
  1992年   14篇
  1991年   14篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   11篇
  1980年   5篇
  1979年   4篇
  1977年   4篇
  1976年   4篇
  1974年   9篇
  1973年   2篇
  1970年   3篇
排序方式: 共有2458条查询结果,搜索用时 281 毫秒
161.
The plant toxin ricin binds to both glycosphingolipids and glycoproteins with terminal galactose and is transported to the Golgi apparatus in a cholesterol-dependent manner. To explore the question of whether glycosphingolipid binding of ricin or glycosphingolipid synthesis is essential for transport of ricin from the plasma membrane to the Golgi apparatus, retrogradely to the endoplasmic reticulum or for translocation of the toxin to the cytosol, we have investigated the effect of ricin and the intracellular transport of this toxin in a glycosphingolipid-deficient mouse melanoma cell line (GM95), in the same cell line transfected with ceramide glucosyltransferase to restore glycosphingolipid synthesis (GM95-CGlcT-KKVK) and in the parental cell line (MEB4). Ricin transport to the Golgi apparatus was monitored by quantifying sulfation of a modified ricin molecule, and toxicity was studied by measuring protein synthesis. The data reveal that ricin is transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum and translocated to the cytosol equally well and apparently at the same rate in cells with and without glycosphingolipids. Importantly cholesterol depletion reduced endosome to Golgi transport of ricin even in cells without glycosphingolipids, demonstrating that cholesterol is required for Golgi transport of ricin bound to glycoproteins. The rate of retrograde transport of ricin was increased strongly by monensin and the lag time for intoxication was reduced both in cells with and in those without glycosphingolipids. In conclusion, neither glycosphingolipid synthesis nor binding of ricin to glycosphingolipids is essential for cholesterol-dependent retrograde transport of ricin. Binding of ricin to glycoproteins is sufficient for all transport steps required for ricin intoxication.  相似文献   
162.
Genes associated with the end of dormancy in grapes   总被引:11,自引:0,他引:11  
A grape bud EST library was constructed and 4,270 ESTs sequenced. The library clones were arrayed for the purpose of investigating the level of gene expression over time, particularly leading up to the buds release from dormancy. The arrays were hybridized with P33-labeled probes produced from samples of buds collected at weekly intervals. These probes covered the time from 9 weeks prior to bud burst until just after the emergence of the shoots. Expression patterns from these genes have been examined. It was found that 74% of the genes in the data set were homologous to known proteins. Genes were then assigned to functional categories according to their primary BLAST match. Of these 13% were involved with photosynthesis, 13% with disease resistance and defense, 5% energy, 12% metabolism, 20% protein production and processing, 25% cell structure and plant growth and the remaining 12% were unclassified The expression pattern of a selection of candidate genes retrieved from literature previously reporting an association with dormancy changes was assessed. On closer examination most of these genes relate to the oxidative processes and stress responses within the cell. The results of this study show that even in the dormant state, gene expression in the buds is high.  相似文献   
163.
164.
165.
Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.  相似文献   
166.
The vomeronasal organ (VNO) of the mouse has two neuronal compartments expressing distinct families of pheromone receptors, the V1Rs and the V2Rs. We report here that two families of major histocompatibility complex (MHC) class Ib molecules, the M10 and the M1 families, show restricted expression in V2R-expressing neurons. Our data suggest that neurons expressing a given V2R specifically co-express one or a few members of the M10 family. Biochemical and immunocytochemical analysis demonstrates that in VNO sensory dendrites M10s belong to large multi-molecular complexes that include pheromone receptors and beta2-microglobulin (beta2m). In cultured cells, M10s appear to function as escort molecules in transport of V2Rs to the cell surface. Accordingly, beta2m-deficient mice exhibit mislocalization of V2Rs in the VNO and a specific defect in male-male aggressive behavior. The functional characterization of M10 highlights an unexpected role for MHC molecules in pheromone detection by mammalian VNO neurons.  相似文献   
167.
The emission of methane (1.3 mmol of CH(4) m(-2) day(-1)), precursors of methanogenesis, and the methanogenic microorganisms of acidic bog peat (pH 4.4) from a moderately reduced forest site were investigated by in situ measurements, microcosm incubations, and cultivation methods, respectively. Bog peat produced CH(4) (0.4 to 1.7 micro mol g [dry wt] of soil(-1) day(-1)) under anoxic conditions. At in situ pH, supplemental H(2)-CO(2), ethanol, and 1-propanol all increased CH(4) production rates while formate, acetate, propionate, and butyrate inhibited the production of CH(4); methanol had no effect. H(2)-dependent acetogenesis occurred in H(2)-CO(2)-supplemented bog peat only after extended incubation periods. Nonsupplemented bog peat initially produced small amounts of H(2) that were subsequently consumed. The accumulation of H(2) was stimulated by ethanol and 1-propanol or by inhibiting methanogenesis with bromoethanesulfonate, and the consumption of ethanol was inhibited by large amounts of H(2); these results collectively indicated that ethanol- or 1-propanol-utilizing bacteria were trophically associated with H(2)-utilizing methanogens. A total of 10(9) anaerobes and 10(7) hydrogenotrophic methanogens per g (dry weight) of bog peat were enumerated by cultivation techniques. A stable methanogenic enrichment was obtained with an acidic, H(2)-CO(2)-supplemented, fatty acid-enriched defined medium. CH(4) production rates by the enrichment were similar at pH 4.5 and 6.5, and acetate inhibited methanogenesis at pH 4.5 but not at pH 6.5. A total of 27 different archaeal 16S rRNA gene sequences indicative of Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae were retrieved from the highest CH(4)-positive serial dilutions of bog peat and methanogenic enrichments. A total of 10 bacterial 16S rRNA gene sequences were also retrieved from the same dilutions and enrichments and were indicative of bacteria that might be responsible for the production of H(2) that could be used by hydrogenotrophic methanogens. These results indicated that in this acidic bog peat, (i) H(2) is an important substrate for acid-tolerant methanogens, (ii) interspecies hydrogen transfer is involved in the degradation of organic carbon, (iii) the accumulation of protonated volatile fatty acids inhibits methanogenesis, and (iv) methanogenesis might be due to the activities of methanogens that are phylogenetic members of the Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae.  相似文献   
168.
The gene products Ycf3 (hypothetical chloroplast open reading frame) and BtpA (biogenesis of thylakoid protein) are thought to be involved in the biogenesis of the membrane protein complex photosystem I (PSI) from Synechocystis PCC 6803. PSI consists of 12 different subunits and binds more than 100 cofactors, making it a model protein to study different aspects of membrane protein biogenesis. For a detailed biophysical characterization of Ycf3 and BtpA pure proteins must be available in sufficient quantities. Therefore we cloned the corresponding genes into expression vectors. To facilitate purification we created His-tagged versions of Ycf3 and BtpA in addition to the unmodified forms. Immobilized metal affinity chromatography (IMAC) yielded His-tagged proteins which were used for the production of antibodies. Purification strategies for non-tagged proteins could also be established: Ycf3 could be purified in soluble form using a two-step purification in which ammonium sulfate precipitation was combined with anion-exchange chromatography (IEC). BtpA had to be purified from inclusion bodies by two-consecutive IEC steps under denaturing conditions. An optimized refolding protocol was established that yielded pure BtpA. In all cases, MALDI-TOF peptide mass fingerprinting (PMF) was used to confirm protein identity. Initially, size exclusion chromatography and CD-spectroscopy were used for biophysical characterization of the proteins. Both Ycf3 and BtpA show homo-oligomerization in vitro. In summary, purification protocols for Ycf3 and BtpA have been designed that yield pure proteins which can be used to probe the molecular function of these proteins for membrane protein biogenesis.  相似文献   
169.
Following initiation of chromosomal replication in Escherichia coli, newly initiated origins (oriCs) are prevented from further initiations by a mechanism termed sequestration. During the sequestration period (which lasts about one-third of a cell cycle), the origins remain hemimethylated. The SeqA protein binds hemimethylated oriC in vitro. In vivo, the absence of SeqA causes overinitiation and strongly reduces the duration of hemimethylation. The pattern of immunostained SeqA complexes in vivo suggests that SeqA has a role in organizing hemimethylated DNA at the replication forks. We have examined the effects of overexpressing SeqA under different cellular conditions. Our data demonstrate that excess SeqA significantly increases the time oriC is hemimethylated following initiation of replication. In some cells, sequestration continued for more than one generation and resulted in inhibition of primary initiation. SeqA overproduction also interfered with the segregation of sister nucleoids and caused a delay in cell division. These results suggest that SeqA's function in regulation of replication initiation is linked to chromosome segregation and possibly cell division.  相似文献   
170.
Plants belonging to the genus Salsola (Family: Chenopodiaceae) are common in the arid and semiarid regions of our planet with no less than 69 different Salsola species found in Namibia and the Republic of South Africa. This genus is used as a traditional medicine and aqueous extracts of Salsola have been used by Bushmen women as an oral contraceptive. Ingestion of the Namibian shrub Salsola tuberculatiformis Botsch. by pregnant Karakul sheep leads to prolonged gestation and fetal post-maturity and, as a result, the pelts of the new-born karakul lambs are worthless. This initiated an investigation into the active agents in the plant, using the terminal enzyme in adrenal corticosteroidogenesis, cytochrome P450-dependent 11beta-hydroxylase (P450c11), as a bioassay. Although the active fraction, S2, was extremely labile, partial structure determination suggested the presence of synephrine and a highly reactive aziridine. Therefore a more stable analogue, 2-(4-acetoxyphenyl)2-chloro-N-methylethylammonium-chloride (compound A), was synthesised, which, like the active plant extracts, inhibited adrenal steroidogenesis and acted as a contraceptive. In addition, compound A was stabilised by interaction with steroid-binding globulins in plasma thus enhancing biological activity in vivo. These findings provided explanations for the complex biological effects of the shrub as well as a new insight into the mode of action of chemically labile plant products in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号