首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   13篇
  国内免费   1篇
  2020年   1篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   13篇
  2012年   8篇
  2011年   6篇
  2010年   1篇
  2009年   8篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1992年   3篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1983年   1篇
  1977年   5篇
  1975年   1篇
  1974年   2篇
  1973年   7篇
  1972年   1篇
  1966年   1篇
  1914年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
51.
52.
53.
The ratio of enzymatic activity to homologous enzyme protein (measured immunologically) can be used as a sensitive index of enzyme homogeneity. The name homospecific activity is proposed for this parameter (units of enzyme activity per mg of antigen). Measurements of homospecific activity allowed detection of inactive forms of dopamine-β-hydroxylase which accumulated during some purification procedures and which were not separable from active enzyme by standard analytical procedures. Homospecific activity is proposed as a routine index of homogeneity during enzyme purification.  相似文献   
54.
Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.  相似文献   
55.
The presynaptic cytoskeletal matrix (cytomatrix) assembled at active zones has been implicated in defining neurotransmitter release sites. Munc13, Rim, Bassoon and Piccolo/Aczonin are recently identified presynaptic cytomatrix proteins. These multidomain proteins are thought to organize the exocytotic and endocytotic machinery precisely at active zones.  相似文献   
56.
57.
58.
The understanding of microbial interactions and trophic networks is a prerequisite for the elucidation of the turnover and transformation of organic materials in soils. To elucidate the incorporation of biomass carbon into a soil microbial food web, we added 13C-labeled Escherichia coli biomass to an agricultural soil and identified those indigenous microbes that were specifically active in its mineralization and carbon sequestration. rRNA stable isotope probing (SIP) revealed that uncultivated relatives of distinct groups of gliding bacterial micropredators (Lysobacter spp., Myxococcales, and the Bacteroidetes) lead carbon sequestration and mineralization from the added biomass. In addition, fungal populations within the Microascaceae were shown to respond to the added biomass after only 1 h of incubation and were thus surprisingly reactive to degradable labile carbon. This RNA-SIP study identifies indigenous microbes specifically active in the transformation of a nondefined complex carbon source, bacterial biomass, directly in a soil ecosystem.  相似文献   
59.
The understanding of microbial interactions and trophic networks is a prerequisite for the elucidation of the turnover and transformation of organic materials in soils. To elucidate the incorporation of biomass carbon into a soil microbial food web, we added 13C-labeled Escherichia coli biomass to an agricultural soil and identified those indigenous microbes that were specifically active in its mineralization and carbon sequestration. rRNA stable isotope probing (SIP) revealed that uncultivated relatives of distinct groups of gliding bacterial micropredators (Lysobacter spp., Myxococcales, and the Bacteroidetes) lead carbon sequestration and mineralization from the added biomass. In addition, fungal populations within the Microascaceae were shown to respond to the added biomass after only 1 h of incubation and were thus surprisingly reactive to degradable labile carbon. This RNA-SIP study identifies indigenous microbes specifically active in the transformation of a nondefined complex carbon source, bacterial biomass, directly in a soil ecosystem.  相似文献   
60.
Synaptic plasticity and memory formation involve remodeling of the postsynaptic cytoskeleton, a process that is in part based on both local translation of dendritic mRNAs and synaptic recruitment of newly synthesized proteins. The postsynaptic component Dendrin that is encoded by a dendritically localized mRNA is thought to modulate the structure of the synaptic cytoskeleton. However, molecular mechanisms that control extrasomatic Dendrin mRNA transport and postsynaptic protein recruitment are unknown. The data presented here reveal that Dendrin interacts with the cytoskeletal components alpha-actinin and Maguk with inverted orientation (MAGI) or synaptic scaffolding molecule (S-SCAM). The latter retains Dendrin in the cytoplasm of mammalian cells and prevents its nuclear import. Furthermore in neurons, postsynaptic clustering of Dendrin requires dendritic targeting of its messenger RNA (mRNA), a process that is mediated by a sequence motif within the 3' untranslated region. In summary our finding suggest that postsynaptic recruitment of Dendrin appears to critically depend on both local protein synthesis and association with the synaptic scaffolding protein MAGI/S-SCAM. Its nuclear localization capacity further points to a function in retrograde signaling from the synapse to the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号