首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4325篇
  免费   283篇
  国内免费   6篇
  2024年   4篇
  2023年   15篇
  2022年   8篇
  2021年   91篇
  2020年   48篇
  2019年   80篇
  2018年   114篇
  2017年   105篇
  2016年   171篇
  2015年   212篇
  2014年   274篇
  2013年   315篇
  2012年   385篇
  2011年   393篇
  2010年   210篇
  2009年   208篇
  2008年   306篇
  2007年   255篇
  2006年   191篇
  2005年   188篇
  2004年   181篇
  2003年   185篇
  2002年   141篇
  2001年   125篇
  2000年   107篇
  1999年   76篇
  1998年   34篇
  1997年   20篇
  1996年   31篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   26篇
  1991年   25篇
  1990年   10篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有4614条查询结果,搜索用时 143 毫秒
141.
The Wellcome Trust Conference Centre at Hinxton, UK, was the meeting place of the 7th HUPO Brain Proteome Project Workshop entitled "High Performance Proteomics". It started on Wednesday, March 7, 2007 with a steering committee meeting followed by a two days series of talks dealing with the standardization and handling of tissues, body fluids as well as of proteomics data. The presentation and accompanying vivid discussions created a picture of actual strategies and standards in recent proteomics.  相似文献   
142.
Kwon Y  Chi P  Roh DH  Klein H  Sung P 《DNA Repair》2007,6(10):1496-1506
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or chromatinized DNA. Here, using various Saccharomyces cerevisiae rad51 and rad54 mutant proteins, mechanistic aspects of Rad54/Rad51-mediated chromatin remodeling are defined. Disruption of the Rad51-Rad54 complex leads to a marked attenuation of chromatin remodeling activity. Moreover, we present evidence that assembly of the Rad51 presynaptic filament represents an obligatory step in the enhancement of the chromatin remodeling reaction. Interestingly, we find a specific interaction of the N-terminal tail of histone H3 with Rad54 and show that the H3 tail interaction domain resides within the amino terminus of Rad54. These results suggest that Rad54-mediated chromatin remodeling coincides with DNA homology search by the Rad51 presynaptic filament and that this process is facilitated by an interaction of Rad54 with histone H3.  相似文献   
143.
Bladder cancer is one of the most common tumors of the genitourinary tract. Here, we use phage display to identify a peptide that targets bladder tumor cells. A phage library containing random peptides was screened for binding to cells from human bladder tumor xenografts. Phage clones were further selected for binding to a bladder tumor cell line in culture. Six clones displaying the consensus sequence CXNXDXR(X)/(R)C showed selective binding to cells from primary human bladder cancer tissue. Of these, the CSNRDARRC sequence was selected for further study as a synthetic peptide. Fluorescein-conjugated CSNRDARRC peptide selectively bound to frozen sections of human bladder tumor tissue, whereas only negligible binding to normal bladder tissue was observed. When the fluorescent peptide was introduced into the bladder lumen, in a carcinogen-induced rat tumor model, it selectively bound to tumor epithelium. Moreover, when the peptide was intravenously injected into the tail vein, it homed to the bladder tumor but was not detectable in normal bladder and control organs. Next, we examined whether the peptide can detect tumor cells in urine. The fluorescent peptide bound to cultured bladder tumor cells but not to other types of tumor cell lines. Moreover, it bound to urinary cells of patients with bladder cancer, while showing little binding to urinary cells of patients with inflammation or healthy individuals. The CSNRDARRC peptide may be useful as a targeting moiety for selective delivery of therapeutics and as a diagnostic probe for the detection of bladder cancer.  相似文献   
144.
Nonhomologous end joining (NHEJ) eliminates DNA double-strand breaks (DSBs) in bacteria and eukaryotes. In Saccharomyces cerevisiae, there are pairwise physical interactions among the core complexes of the NHEJ pathway, namely Yku70-Yku80 (Ku), Dnl4-Lif1 and Mre11-Rad50-Xrs2 (MRX). However, MRX also has a key role in the repair of DSBs by homologous recombination (HR). Here we have examined the assembly of NHEJ complexes at DSBs biochemically and by chromatin immunoprecipitation. Ku first binds to the DNA end and then recruits Dnl4-Lif1. Notably, Dnl4-Lif1 stabilizes the binding of Ku to in vivo DSBs. Ku and Dnl4-Lif1 not only initiate formation of the nucleoprotein NHEJ complex but also attenuate HR by inhibiting DNA end resection. Therefore, Dnl4-Lif1 plays an important part in determining repair pathway choice by participating at an early stage of DSB engagement in addition to providing the DNA ligase activity that completes NHEJ.  相似文献   
145.
This study presents a systematic modeling approach for examining the efficiency of the MEOR process based on in situ selective plugging by bacterial biopolymer production and optimization of the nutrient injection strategy to yield the maximum oil recovery. This study focuses on modeling in situ selective plugging by the bacterial biopolymer dextran that is generated by Leuconostoc mesenteroides. Bacterial growth and dextran generation were described by a stoichiometric equation and kinetic reactions using batch model simulation. Based on the parameters for permeability reduction obtained from the sandpack model, the MEOR process was implemented in a pilot-scale system that included a highly permeable thief zone in a low-permeability reservoir. The base MEOR design yielded a 61.5% improvement of the recovery factor compared to that obtained with waterflooding. The parametric simulations revealed that the recovery efficiency was influenced by the amount of dextran, as well as the distribution of dextran, and thus, the injection strategy is critical for controlling the dextran distribution. By incorporating the results from the sensitivity analysis and optimization to determine the optimal design parameters, a 36.7% improvement of the oil recovery was achieved with the optimized MEOR process in comparison with the base case.  相似文献   
146.
First total synthesis of methylgerambullone (MGB, 1) isolated from Glycosmis angustifolia was completed via a convergent route. The effect of MGB on the contractile responses of the isolated guinea-pig ileum induced by acetylcholine was investigated. As a result, it showed a potent relaxation rate (78.66 ± 4.30% at 100 mg/L) in a concentration-dependent manner on longitudinal smooth muscle contraction of isolated guinea-pig ileum induced by 1 μM acetylcholine.  相似文献   
147.
Kwon SY  Lin T  Takei H  Ma Q  Wood DJ  O'Connor D  Sung KL 《Biorheology》2001,38(2-3):161-183
Total joint replacement prostheses are required to withstand corrosive environments and sustain millions of loading and articulation cycles during their term of implantation. Wear debris generation has been implicated as one of the primary causes of periprosthetic osteolysis and subsequent implant loosening in total joint replacements. Particulate debris consisting of metals, polyethylene, ceramics, and bone cement have each been shown to provoke a biological response in joint tissues. The major cell types within the interfacial granulomatous fibrous tissues consist of fibroblasts, macrophages, lymphocytes, and foreign-body giant cells. Osteoblasts are one of the principal cell types in the bone tissue adjacent to prostheses, maintaining physiologic bone remodeling through the balanced coordination of bone formation and resorption in concert with osteoclasts. To date the phenomenon of osteoblast phagocytosis of titanium particles has been suggested, but has not been sufficiently studied or confirmed. This study seeks to clarify the influence of titanium particles on osteoblast adhesion, deformability, proliferation, and gene expression profile. These studies were accomplished by performing biorheological testing, Northern blot analysis and RNase protection assay. The uptake of metallic particles by the osteoblast resulted in a particle-filament complex formation, which induced a series of variations in cell function. Understanding these variations is critical to expanding our knowledge of implant loosening and elucidating the nature of prosthetic joint failure. This study suggests that the impact of titanium particles on osteoblast function and subsequent implant loosening may have been previously underestimated.  相似文献   
148.
In clinical research, retrovirus-mediated gene therapy is one of the most commonly used methods to deliver and express the gene of interest due its ability to allow for stable gene integration into the chromosomes of target cells. To elevate the efficiency of viral transduction, several restrictions, such as low virus-cell encounters and the necessity for cell division, must be improved. In this study, we focused on the possibility of accelerating cell division and the ensuing increment of viral transduction on flexible substrata. Perfluorocarbon FC-40 was harnessed to form a liquid-liquid interface with culture medium. Enhanced green fluorescence protein (EGFP) was employed as the marker gene to quickly illustrate the percentage of viral infection. The results indicate that the gene transfer efficiency to 293 cells cultured on protein-precoated liquid-liquid interfaces was higher than in cells cultured on rigid polystyrene surfaces. This increased transduction rate on the liquid-liquid interface is consistent with the acceleration of division of 293 cells on a flexible interface, which exhibited less adhesiveness. The effect of cell-cell contact inhibition on the rate of gene transduction is also addressed in this study.  相似文献   
149.
Previous studies showed that exposure to Vibrio vulnificus cytolysin (VVC) caused characteristic morphologic changes and dysfunction of vascular structures in lung. VVC showed cytotoxicity for mammalian cells in culture and acted as a vascular permeability factor. In this study, the underlying mechanisms of VVC-induced cytotoxicity was investigated on ECV304 cell, a human vascular endothelial cell line. When cells were exposed to 0.4 hemolytic units (HU) of VVC, consecutive apoptotic events were observed; the elevation of superoxide anion (O (-.)(2)), the release of cytochrome c, the activation of caspase-3, the cleavage of poly(ADP-ribose) polymerase, and the DNA fragmentation. The pretreatment with 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), O(-.) 2) scavenger, completely abolished O(-.)(2) levels and downstream apoptotic events. Moreover, pretreatment with cyclosporin A (CsA), a mitochondrial permeability transition inhibitor, was capable of attenuating O(-.)(2)-mediated cytochrome c release and caspase-3 activation, and consequent apoptosis. Apoptosis, as demonstrated by oligonucleosomal DNA fragmentation and fluorescence microscopy, was induced 24 h after VVC treatment, which was also prevented by caspase-3 inhibitor, Ac-DEVD-CHO. Caspase-1 inhibitor, Ac-YVAD-CHO, did not protect ECV 304 cells from apoptosis. These results suggest a scenario where VVC-induced apoptosis is triggered by the generation of O(-.)(2), release of cytochrome c from mitochondria, activation of caspase-3, degradation of poly(ADP-ribose) polymerase, and DNA fragmentation. The induction of apoptosis in endothelial cells by VVC may provide a pivotal mechanism for understanding the pathophysiology of septicemia.  相似文献   
150.
FLASH is a protein recently shown to interact with the death effector domain of caspase-8 and is likely to be a component of the death-inducing signaling complex in receptor-mediated apoptosis. Here we show that antisense oligonucleotide-induced inhibition of FLASH expression abolished TNF-alpha-induced activation of NF-kappaB in HEK293 cells, as determined by luciferase reporter gene expression driven by a NF-kappaB responsive promoter. Conversely, overexpression of FLASH dose-dependently activated NF-kappaB, an effect suppressed by dominant negative mutants of TRAF2, NIK, and IKKalpha, and partially by those of TRAF5 and TRAF6. TRAF2 was co-immunoprecipitated with FLASH from the cell extracts of HEK293 cells or HeLa cells stably expressing exogenous FLASH (HeLa/HA-FLASH). Furthermore, serial deletion mapping demonstrated that a domain spanning the residues 856-1191 of FLASH activated NF-kappaB as efficiently as the full-length and could directly bind to TRAF2 in vitro and in the transfected cells. Taken together, these results suggest that FLASH coordinates downstream NF-kappaB activity via a TRAF2-dependent pathway in the TNF-alpha signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号