首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   2篇
  2018年   2篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  2000年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1972年   4篇
  1967年   1篇
  1966年   1篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
21.
22.
Mcl-1 is a unique antiapoptotic Bcl2 family member with a short half-life due to its rapid turnover through ubiquitination. We discovered that Ku70, a DNA double-strand break repair protein, functions as a deubiquitinase to stabilize Mcl-1. Ku70 knockout in mouse embryonic fibroblast (MEF) cells or depletion from human lung cancer H1299 cells leads to the accumulation of polyubiquitinated Mcl-1 and a reduction in its half-life and protein expression. Conversely, expression of exogenous Ku70 in Ku70−/− MEF cells restores Mcl-1 expression. Subcellular fractionation indicates that Ku70 extensively colocalizes with Mcl-1 in mitochondria, endoplasmic reticulum and nucleus in H1299 cells. Ku70 directly interacts with Mcl-1 via its C terminus (that is, aa 536–609), which is required and sufficient for deubiquitination and stabilization of Mcl-1, leading to suppression of apoptosis. Purified Ku70 protein directly deubiquitinates Mcl-1 by removing K48-linked polyubiquitin chains. Ku70 knockdown not only promotes Mcl-1 turnover but also enhances antitumor efficacy of the BH3-mimetic ABT-737 in human lung cancer xenografts. These findings identify Ku70 as a novel Mcl-1 deubiquitinase that could be a potential target for cancer therapy by manipulating Mcl-1 deubiquitination.Mcl-1 is an antiapoptotic molecule that is overexpressed in various types of cancers, including lung cancer,1 leukemia,2 lymphoma,3 hepatocellular carcinoma4 and so on. In addition to its antiapoptotic function, Mcl-1 is also an oncoprotein that promotes the development of cancer.5 In contrast to other Bcl2 family members such as Bcl2 and Bcl-XL, Mcl-1 is unique in its short half-life (30 min–3 h) and short-term prosurvival function, which probably relates to the presence of a long proline-, glutamic acid-, serine- and threonine-rich (PEST) region upstream of the Bcl2 homology (BH) domain.1 The mechanism(s) that stabilizes the Mcl-1 protein are critical for its long-term survival function. Mcl-1 protein can be phosphorylated at multiple sites that distinctly regulate Mcl-1 protein turnover. For example, extracellular signal-regulated kinase 1/2-mediated T163 site phosphorylation enhances the half-life and antiapoptotic function of Mcl-1.1, 6 In contrast, S159 phosphorylation by GSK-3β facilitates Mcl-1 ubiquitination and degradation to reduce its survival activity.7Ubiquitination and deubiquitination are two reversible processes that can control protein stability. E3 ligases and deubiquitinases (deubiquitinating enzymes (DUBs)) are two groups of regulatory enzymes that orchestrate the ubiquitination levels of target proteins in eukaryotic cells.8 Recently, Mule and FBW7 have been identified as Mcl-1 ubiquitin E3 ligases that can directly induce polyubiquitination and degradation of Mcl-1.9, 10 Inversely, USP9X has been demonstrated as the Mcl-1 deubiquitinase that removes the Lys 48-linked polyubiquitin chains that normally mark Mcl-1 for proteasomal degradation, leading to stabilization of Mcl-1.3 Therefore, the stability of Mcl-1 in cells is tightly regulated by its E3 ligases and deubiquitinase, which is dependent on Mcl-1 phosphorylation status.3, 11Ku70 is a protein that binds to DNA double-strand break (DSB) ends and is required for the non-homologous end-joining pathway of DSB repair.12, 13, 14, 15 The Ku70 protein consists of three structural domains, including the N-terminal, central (that is, DNA binding) and C-terminal domains.16, 17 Ku70 usually heterodimerizes with Ku86, which forms a functional complex for DSB repair. By forming a bridge between the broken DNA ends, the Ku70/Ku86 heterodimer acts to structurally support and align the DNA ends, to protect them from degradation and to prevent promiscuous binding to unbroken DNA. Ku70/Ku86 effectively aligns the DNA, while still allowing access of polymerases, nucleases and ligases to the broken DNA ends to promote end joining.18 In some cases, a fourth domain is present at the C terminus of Ku86, which binds to the DNA-dependent protein kinase catalytic subunit.19 Importantly, Ku70 also regulates apoptosis independent of its DSB repair activity. For example, a recent report revealed that Ku70 regulates the proapoptotic function of Bax by sequestering Bax from the mitochondria and mediating Bax deubiquitylation.20 Here we discovered that Ku70 functions as a novel Mcl-1 deubiquitinase that directly removes polyubiquitin chains from Mcl-1 protein, leading to reduced Mcl-1 ubiquitination/degradation, enhanced stability and suppression of apoptosis.  相似文献   
23.
24.
Wang Q  Sun SY  Khuri F  Curran WJ  Deng X 《PloS one》2010,5(10):e13393
Bax is the major multidomain proapoptotic molecule that is required for apoptosis. It has been reported that phosphorylation of Bax at serine(S) 163 or S184 activates or inactivates its proapoptotic function, respectively. To uncover the mechanism(s) by which phosphorylation regulates the proapoptotic function of Bax, a series of serine (S)→ alanine/glutamate (A/E) Bax mutants, including S163A, S184A, S163E, S184E, S163E/S184A (EA), S163A/S184E (AE), S163A/S184A (AA) and S163E/S184E (EE), were created to abrogate or mimic, respectively, either single or double-site phosphorylation. The compound Bax mutants (i.e. EA and AE) can flesh out the functional contribution of individual phosphorylation site(s). WT and each of these Bax mutants were overexpressed in Bax(-/-) MEF or lung cancer H157 cells and the proapoptotic activities were compared. Intriguingly, expression of any of Bax mutants containing the mutation S→A at S184 (i.e. S184A, EA or AA) represents more potent proapoptotic activity as compared to WT Bax in association with increased 6A7 epitope conformational change, mitochondrial localization/insertion and prolonged half-life. In contrast, all Bax mutants containing the mutation S→E at S184 (i.e. S184E, AE or EE) have a mobility-shift and fail to insert into mitochondrial membranes with decreased protein stability and less apoptotic activity. Unexpectedly, mutation either S→A or S→E at S163 site does not significantly affect the proapoptotic activity of Bax. These findings indicate that S184 but not S163 is the major phosphorylation site for functional regulation of Bax's activity. Therefore, manipulation of the phosphorylation status of Bax at S184 may represent a novel strategy for cancer treatment.  相似文献   
25.
26.
Death receptor 5 (DR5) and caspase-8 are major components in the extrinsic apoptotic pathway. The alterations of the expression of these proteins during the metastasis of head and neck squamous cell carcinoma (HNSCC) and their prognostic impact have not been reported. The present study analyzes the expression of DR5 and caspase-8 by immunohistochemistry (IHC) in primary and metastatic HNSCCs and their impact on patient survival. Tumor samples in this study included 100 primary HNSCC with no evidence of metastasis, 100 primary HNSCC with lymph node metastasis (LNM) and 100 matching LNM. IHC analysis revealed a significant loss or downregulation of DR5 expression in primary tumors with metastasis and their matching LNM compared to primary tumors with no evidence of metastasis. A similar trend was observed in caspase-8 expression although it was not statistically significant. Downregulation of caspase-8 and DR5 expression was significantly correlated with poorly differentiated tumors compared to moderately and well differentiated tumors. Univariate analysis indicates that, in HNSCC with no metastasis, higher expression of caspase-8 significantly correlated with better disease-free survival and overall survival. However, in HNSCC with LNM, higher caspase-8 expression significantly correlated with poorer disease-free survival and overall survival. Similar results were also generated when we combined both DR5 and caspase-8. Taken together, we suggest that both DR5 and caspase-8 are involved in regulation of HNSCC metastasis. Our findings warrant further investigation on the dual role of caspase-8 in cancer development.  相似文献   
27.
Glucose is a simple sugar that plays an essential role in many basic metabolic and signaling pathways. Many proteins have binding sites that are highly specific to glucose. The exponential increase of genomic data has revealed the identity of many proteins that seem to be central to biological processes, but whose exact functions are unknown. Many of these proteins seem to be associated with disease processes. Being able to predict glucose‐specific binding sites in these proteins will greatly enhance our ability to annotate protein function and may significantly contribute to drug design. We hereby present the first glucose‐binding site classifier algorithm. We consider the sugar‐binding pocket as a spherical spatio‐chemical environment and represent it as a vector of geometric and chemical features. We then perform Random Forests feature selection to identify key features and analyze them using support vector machines classification. Our work shows that glucose binding sites can be modeled effectively using a limited number of basic chemical and residue features. Using a leave‐one‐out cross‐validation method, our classifier achieves a 8.11% error, a 89.66% sensitivity and a 93.33% specificity over our dataset. From a biochemical perspective, our results support the relevance of ordered water molecules and ions in determining glucose specificity. They also reveal the importance of carboxylate residues in glucose binding and the high concentration of negatively charged atoms in direct contact with the bound glucose molecule. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
28.
The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD(+). LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD(+). However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD(+) redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells.  相似文献   
29.
30.
Parkinson's disease (PD) has had six genome-wide association studies (GWAS) conducted as well as several gene expression studies. However, only variants in MAPT and SNCA have been consistently replicated. To improve the utility of these approaches, we applied pathway analyses integrating both GWAS and gene expression. The top 5000 SNPs (p<0.01) from a joint analysis of three existing PD GWAS were identified and each assigned to a gene. For gene expression, rather than the traditional comparison of one anatomical region between sets of patients and controls, we identified differentially expressed genes between adjacent Braak regions in each individual and adjusted using average control expression profiles. Over-represented pathways were calculated using a hyper-geometric statistical comparison. An integrated, systems meta-analysis of the over-represented pathways combined the expression and GWAS results using a Fisher's combined probability test. Four of the top seven pathways from each approach were identical. The top three pathways in the meta-analysis, with their corrected p-values, were axonal guidance (p = 2.8E-07), focal adhesion (p = 7.7E-06) and calcium signaling (p = 2.9E-05). These results support that a systems biology (pathway) approach will provide additional insight into the genetic etiology of PD and that these pathways have both biological and statistical support to be important in PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号