首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   21篇
  国内免费   1篇
  2023年   14篇
  2022年   9篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   12篇
  2017年   15篇
  2016年   13篇
  2015年   22篇
  2014年   17篇
  2013年   40篇
  2012年   34篇
  2011年   40篇
  2010年   22篇
  2009年   11篇
  2008年   14篇
  2007年   15篇
  2006年   11篇
  2005年   6篇
  2004年   12篇
  2003年   9篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有390条查询结果,搜索用时 640 毫秒
331.
Arthrogryposis multiplex congenita (AMC), defined as permanent joint contractures present at birth, is one of the most common congenital defects in piglets and other mammals. A genetic form of arthrogryposis was recently identified in Swiss Large White (LW) pigs. The disease is controlled by a single autosomal recessive allele designated as amc. At least 14 LW AI (artificial insemination) boars (about 25% of the Swiss population) are known to be carriers of the amc allele. A total of 219 pigs were used for linkage analysis, including seven founders (F1), three F0, 160 F2, and 49 F3 animals. All founder pigs were full or half sibs. Of the 219 pigs, 41 (18.7%) were found to be affected, while the remaining 178 (81.3%) were healthy. A comprehensive genome scan revealed that microsatellite SW1987 located on pig (Sus scrofa) Chromosome 5 (SSC5), was linked with AMC. Sixteen additional SSC5 microsatellites were selected for further genotyping to generate a multipoint map covering the AMC region. Significant pairwise linkage (LOD > 6.00) was found for AMC and eight marker loci. The order that best fit with the data was SW963SW1987SW152AMC–(SW904, SW1094)–SWR1526–(SWR1974, SW310). AMC was mapped by linkage analysis to the position 92 cM, between SW152 and SW904/SW1094, which are located on SSC5 in bands q12–q23.  相似文献   
332.
Tryptophan synthase: the workings of a channeling nanomachine   总被引:1,自引:0,他引:1  
Substrate channeling between enzymes has an important role in cellular metabolism by compartmentalizing cytoplasmic synthetic processes. The bacterial tryptophan synthases are multienzyme nanomachines that catalyze the last two steps in L-tryptophan biosynthesis. The common metabolite indole is transferred from one enzyme to the other in each alphabeta-dimeric unit of the alpha2beta2 complex via an interconnecting 25-A-long tunnel. Recent solution studies of the Salmonella typhimurium alpha2beta2 complex coupled with X-ray crystal-structure determinations of complexes with substrates, intermediates and substrate analogs have driven important breakthroughs concerning the identification of the linkages between the bi-enzyme complex structure, catalysis at the alpha- and beta-active sites, and the allosteric regulation of substrate channeling.  相似文献   
333.
Shih YL  Fu X  King GF  Le T  Rothfield L 《The EMBO journal》2002,21(13):3347-3357
The MinE protein functions as a topological specificity factor in determining the site of septal placement in Escherichia coli. MinE assembles into a membrane-associated ring structure near midcell and directs the localization of MinD and MinC into a membrane- associated polar zone that undergoes a characteristic pole-to-pole oscillation cycle. Single (green fluorescent protein) and double label (yellow fluorescent protein/cyan fluorescent protein) fluorescence labeling experiments showed that mutational alteration of a site on the alpha-face of MinE led to a failure to assemble the MinE ring, associated with loss of the ability to support a normal pattern of division site placement. The absence of the MinE ring did not prevent the assembly and disassembly of the MinD polar zone. Mutant cells lacking the MinE ring were characterized by the growth of MinD polar zones past their normal arrest point near midcell. The results suggested that the MinE ring acts as a stop-growth mechanism to prevent the MinCD polar zone from extending beyond the midcell division site.  相似文献   
334.
Decrystallized chitosan was produced from shrimp shells with a low degree of crystallinity (10%) and a high anionic dye binding capacity. Raw, mixed dye wastewater from a textile factory was efficiently decolorized using decrystallized chitosan that was more efficient than using normal chitosan and activated carbon. Decolorization reached 90% within 10 min and could be carried out from pH 4.5 to 8.1. Decrystallized chitosan can be regenerated by 2 M H2SO4 and was reusable more than 10 times. It is, therefore, an attractive candidate for the removal of dyes from textile wastewater.  相似文献   
335.
We have created a stable, tetracycline-inducible HeLa cell line that overexpresses murine uridine diphosphate-N-acetylglucosaminyl transferase (OGT). Tetracycline increased cytosolic OGT activity about 4-fold in a dose-dependent manner (ED(50)=0.03 microg/ml) with enhanced activity observable at 8h and maximal activity observable by 40h. Enhanced OGT activity was due to overexpression of OGT protein as determined by Western analysis. Trichostatin A (TSA), a potent and specific histone deacetylase inhibitor (HDI), markedly enhanced tetracycline-induced OGT gene expression, resulting in a >10-fold increase in OGT activity (>50-fold compared to that of uninduced cells). Other HDIs such as butyrate (ED(50)=1.6mM) and propionate (ED(50)=8mM) were similarly effective, but less potent than TSA (ED(50)=120 nM). We next examined the appearance of recombinant OGT in cytosol and nucleosol at various times (10 min to 6h) after inducing OGT gene. Within 2h, recombinant OGT was detected by Western analysis in both cytosol and nucleosol. This indicates rapid biosynthesis and accumulation of recombinant OGT in the cytosol and subsequent nuclear translocation. Entry of OGT into the nucleus was closely correlated with enhanced O-linked glycosylation of nuclear proteins, indicating that recombinant OGT was enzymatically active. The ability to rapidly induce OGT expression in a stable cell line provides an excellent model system to study the mechanism(s) underlying OGT nuclear translocation and a useful system to elucidate the cascade of signaling events related to O-linked glycosylation.  相似文献   
336.
Harris RM  Ngo H  Dunn MF 《Biochemistry》2005,44(51):16886-16895
Substrate channeling in the tryptophan synthase bienzyme complex is regulated by allosteric signals between the alpha- and beta-active sites acting over a distance of 25 A. At the alpha-site, indole is cleaved from 3-indole-D-glycerol 3'-phosphate (IGP) and is channeled to the beta-site via a tunnel. Harris and Dunn [Harris, R. M., and Dunn, M. F. (2002) Biochemistry 41, 9982-9990] showed that when the novel amino acid, dihydroiso-L-tryptophan (DIT), reacts with the beta-site, the alpha-aminoacrylate Schiff base, E(A-A), is formed and the enzyme releases indoline. The indoline produced exits the enzyme via the tunnel out the open alpha-site. When the alpha-site ligand (ASL) alpha-D,L-glycerol 3-phosphate (GP) binds and closes the alpha-site, indoline generated in the DIT reaction is trapped for a short period of time as the quinonoid intermediate in rapid equilibrium with bound indoline and the E(A-A) intermediate before leaking out of the closed enzyme. In this work, we use the DIT reaction and a new, high-affinity, ASL, N-(4-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethyl phosphate (F9), to explore the mechanism of ligand leakage from the closed enzyme. It was found that F9 binding to the alpha-site is significantly more effective than GP in trapping indoline in the DIT reaction; however, leakage of indoline from the enzyme into solution still occurs. It was also found that a combination of benzimidazole (BZI) and GP provided even more effective trapping than F9. The new experiments with F9 and the combination of BZI and GP provide evidence that the coincident binding of GP and BZI at the alpha-site exhibits a strong synergistic effect that greatly slows the leakage of indoline in the DIT reaction and enhances the trapping effect. This synergism functions to tightly close the alpha-site and sends an allosteric signal that stabilizes the closed structure of the beta-site. These studies also support a mechanism for the escape of indoline through the alpha-site that is limited by ASL dissociation.  相似文献   
337.
Anopheles sundaicus species A of the Southeast Asian A. sundaicus complex is formally named Anopheles epiroticus Linton & Harbach based on DNA sequence differentiation of the whole nuclear ITS2 region and a portion of both the cytochrome b and cytochrome c oxidase I mitochondrial genes. Detailed comparative morphological studies of the adult, larval and pupal stages did not reveal any differential or diagnostic differences that reliably distinguish A. epiroticus from A. sundaicus s.s. Information is provided on the bionomics and systematics of the new species.  相似文献   
338.
The catalytic subunit of cAMP-dependent protein kinase has served as a paradigm for the entire kinase family. In the course of studying the structure-function relationship of the P+1 loop (Leu198-Leu205) of the kinase, we have solved the crystal structure of the Tyr204 to Ala mutant in complexes with Mg.ATP and an inhibitory peptide at 1.26A, with overall structure very similar to that of the wild-type protein. However, at the nucleotide binding site, ATP was found largely hydrolyzed, with the products ADP-PO(4) retained in the structure. High-resolution refinement suggests that 26% of the molecules contain the intact ATP, whereas 74% have the hydrolyzed products. The observation of the substrate and product states in the same structure adds significant information to our understanding of the phosphoryl transfer process. Structural examination of the mutation site substantiates and extends the emerging concept that the hydrophobic core in the large lobe of the kinase might serve as a stable platform for anchoring key segments involved in catalysis. We propose that Tyr204 is critical for anchoring the P+1 loop to the core. Further analysis has highlighted two major connections between the P+1 loop and the catalytic loop (Arg165-Asn171). One emphasizes the hydrophobic packing of Tyr204 and Leu167 mediated through residues from the alphaF-helix, recently recognized as a signal integration motif, which together with the alphaE-helix forms the center of the hydrophobic core network. The other connection is mediated by the hydrogen bond interaction between Thr201 and Asp166, in a substrate-dependent manner. We speculate that the latter interaction may be important for the kinase to sense the presence of substrate and prepare itself for the catalytic reaction. Thus, the P+1 loop is not merely involved in substrate binding; it mediates the communication between substrate and catalytic residues.  相似文献   
339.
This work describes the purification and characterization of enzymes that exhibit beta-d-xylosidase activity in stem tissues of Arabidopsis. This is the first detailed investigation that concerns the characterization of catalytic properties and sequence identity of enzymes with beta-D-xylosidase activities in a dicotyledonous plant. Three different enzymes, ARAf, XYL4, and XYL1 with apparent molecular masses of 75, 67, and 64 kD, respectively, were purified to homogeneity. ARAf was identified as a putative alpha-L-arabinofuranosidase, and XYL4 and XYL1 as putative beta-D-xylosidases using matrix-assisted laser-desorption ionization time of flight. ARAf belongs to family 51 and XYL4 and XYL1 to family 3 of glycoside hydrolases. ARAf and XYL1 have highest specificity for p-nitrophenyl-alpha-L-arabinofuranoside and XYL4 for p-nitrophenyl-beta-D-xylopyranoside and natural substrates such as xylobiose and xylotetraose. XYL4 was shown to release mainly D-Xyl from oat spelt xylan, rye arabinoxylan, wheat arabinoxylan, and oligoarabinoxylans. ARAf and XYL1 can also release D-Xyl from these substrates but less efficiently than XYL4. Moreover, they can also release L-Ara from arabinoxylans and arabinan. Overall, the results indicate that XYL4 possesses enzymatic specificity characteristic for a beta-D-xylosidase, while ARAf and XYL1 act as bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidases. Analysis of the activity of these three enzymes in stem tissues at different stages of development has shown that young stems possess the highest activities for all three enzymes in comparison to the activities of the enzymes present in stems at older stages of development. High enzyme activities are most likely related to the necessary modifications of cell wall structure occurring during plant growth.  相似文献   
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号