首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   9篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1985年   1篇
  1980年   2篇
  1977年   1篇
  1966年   1篇
排序方式: 共有87条查询结果,搜索用时 640 毫秒
61.
To understand why cross-species infection of prion disease often results in inefficient transmission and reduced protein conversion, most research has focused on defining the effect of variations in PrP primary structures, including sequence compatibility of substrate and seed. By contrast, little research has been aimed at investigating structural differences between different variants of PrPC and secondary structural requirements for efficient conversion. This is despite a clear role for molecular chaperones in formation of prions in non-mammalian systems, indicating the importance of secondary/tertiary structure during the conversion process. Recent data from our laboratory on the cellular location of disease-specific prion cofactors supports the critical role of specific secondary structural motifs and the stability of these motifs in determining the efficiency of disease-specific prion protein conversion. In this paper we summarize our recent results and build on the hypothesis previously suggested by Wuthrich and colleagues, that stability of certain regions of the prion protein is crucial for protein conversion to abnormal isoforms in vivo. It is suggested that one role for molecular cofactors in the conversion process is to stabilize PrPC structure in a form that is amenable for conversion to PrPSc.Key words: cofactor, structure, cell-free conversion assay, fibrillization, stability, loop region  相似文献   
62.

Background  

Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear.  相似文献   
63.
In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High‐throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis‐related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio‐engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype‐to‐gene identification pipeline.  相似文献   
64.
In Vietnam, a large proportion of all malaria cases and deaths occurs in the central mountainous and forested part of the country. Indeed, forest malaria, despite intensive control activities, is still a major problem which raises several questions about its dynamics. A large-scale malaria morbidity survey to measure malaria endemicity and identify important risk factors was carried out in 43 villages situated in a forested area of Ninh Thuan province, south central Vietnam. Four thousand three hundred and six randomly selected individuals, aged 10–60 years, participated in the survey. Rag Lays (86%), traditionally living in the forest and practising "slash and burn" cultivation represented the most common ethnic group. The overall parasite rate was 13.3% (range [0–42.3] while Plasmodium falciparum seroprevalence was 25.5% (range [2.1–75.6]). Mapping of these two variables showed a patchy distribution, suggesting that risk factors other than remoteness and forest proximity modulated the human-vector interactions. This was confirmed by the results of the multivariate-adjusted analysis, showing that forest work was a significant risk factor for malaria infection, further increased by staying in the forest overnight (OR= 2.86; 95%CI [1.62; 5.07]). Rag Lays had a higher risk of malaria infection, which inversely related to education level and socio-economic status. Women were less at risk than men (OR = 0.71; 95%CI [0.59; 0.86]), a possible consequence of different behaviour. This study confirms that malaria endemicity is still relatively high in this area and that the dynamics of transmission is constantly modulated by the behaviour of both humans and vectors. A well-targeted intervention reducing the "vector/forest worker" interaction, based on long-lasting insecticidal material, could be appropriate in this environment.  相似文献   
65.

Introduction

Although Total Hip and Knee Replacements (THR/TKR) improve Health-Related Quality of Life (HRQoL) at the group level, up to 30% of patients are dissatisfied after surgery due to unfulfilled expectations. We aimed to assess whether the pre-operative radiographic severity of osteoarthritis (OA) is related to the improvement in HRQoL after THR or TKR, both at the population and individual level.

Methods

In this multi-center observational cohort study, HRQoL of OA patients requiring THR or TKR was measured 2 weeks before surgery and at 2–5 years follow-up, using the Short-Form 36 (SF36). Additionally, we measured patient satisfaction on a 11-point Numeric Rating Scale (NRSS). The radiographic severity of OA was classified according to Kellgren and Lawrence (KL) by an independent experienced musculoskeletal radiologist, blinded for the outcome. We compared the mean improvement and probability of a relevant improvement (defined as a patients change score≥Minimal Clinically Important Difference) between patients with mild OA (KL Grade 0–2) and severe OA (KL Grade 3+4), whilst adjusting for confounders.

Results

Severe OA patients improved more and had a higher probability of a relevant improvement in physical functioning after both THR and TKR. For TKR patients with severe OA, larger improvements were found in General Health, Vitality and the Physical Component Summary Scale. The mean NRSS was also higher in severe OA TKR patients.

Discussion

Patients with severe OA have a better prognosis after THR and TKR than patients with mild OA. These findings might help to prevent dissatisfaction after THR and TKR by means of patient selection or expectation management.  相似文献   
66.

Background

Recent focus on earlier detection of pathogen introduction in human and animal populations has led to the development of surveillance systems based on automated monitoring of health data. Real- or near real-time monitoring of pre-diagnostic data requires automated classification of records into syndromes–syndromic surveillance–using algorithms that incorporate medical knowledge in a reliable and efficient way, while remaining comprehensible to end users.

Methods

This paper describes the application of two of machine learning (Naïve Bayes and Decision Trees) and rule-based methods to extract syndromic information from laboratory test requests submitted to a veterinary diagnostic laboratory.

Results

High performance (F1-macro = 0.9995) was achieved through the use of a rule-based syndrome classifier, based on rule induction followed by manual modification during the construction phase, which also resulted in clear interpretability of the resulting classification process. An unmodified rule induction algorithm achieved an F1-micro score of 0.979 though this fell to 0.677 when performance for individual classes was averaged in an unweighted manner (F1-macro), due to the fact that the algorithm failed to learn 3 of the 16 classes from the training set. Decision Trees showed equal interpretability to the rule-based approaches, but achieved an F1-micro score of 0.923 (falling to 0.311 when classes are given equal weight). A Naïve Bayes classifier learned all classes and achieved high performance (F1-micro = 0.994 and F1-macro = .955), however the classification process is not transparent to the domain experts.

Conclusion

The use of a manually customised rule set allowed for the development of a system for classification of laboratory tests into syndromic groups with very high performance, and high interpretability by the domain experts. Further research is required to develop internal validation rules in order to establish automated methods to update model rules without user input.  相似文献   
67.

Background

Past experience and modelling suggest that, in most cases, mass treatment strategies are not likely to succeed in interrupting Plasmodium falciparum malaria transmission. However, this does not preclude their use to reduce disease burden. Mass screening and treatment (MSAT) is preferred to mass drug administration (MDA), as the latter involves massive over-use of drugs. This paper reports simulations of the incremental cost-effectiveness of well-conducted MSAT campaigns as a strategy for P. falciparum malaria disease-burden reduction in settings with varying receptivity (ability of the combined vector population in a setting to transmit disease) and access to case management.

Methods

MSAT incremental cost-effectiveness ratios (ICERs) were estimated in different sub-Saharan African settings using simulation models of the dynamics of malaria and a literature-based MSAT cost estimate. Imported infections were simulated at a rate of two per 1,000 population per annum. These estimates were compared to the ICERs of scaling up case management or insecticide-treated net (ITN) coverage in each baseline health system, in the absence of MSAT.

Results

MSAT averted most episodes, and resulted in the lowest ICERs, in settings with a moderate level of disease burden. At a low pre-intervention entomological inoculation rate (EIR) of two infectious bites per adult per annum (IBPAPA) MSAT was never more cost-effective than scaling up ITNs or case management coverage. However, at pre-intervention entomological inoculation rates (EIRs) of 20 and 50 IBPAPA and ITN coverage levels of 40 or 60%, respectively, the ICER of MSAT was similar to that of scaling up ITN coverage further.

Conclusions

In all the transmission settings considered, achieving a minimal level of ITN coverage is a “best buy”. At low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to high levels of transmission and at moderate ITN coverage. If undertaken as a burden-reducing intervention, MSAT should be continued indefinitely and should complement, not replace, case management and vector control interventions.  相似文献   
68.
69.

Background  

The progress in the "-omic" sciences has allowed a deeper knowledge on many biological systems with industrial interest. This knowledge is still rarely used for advanced bioprocess monitoring and control at the bioreactor level. In this work, a bioprocess control method is presented, which is designed on the basis of the metabolic network of the organism under consideration. The bioprocess dynamics are formulated using hybrid rigorous/data driven systems and its inherent structure is defined by the metabolism elementary modes.  相似文献   
70.

Background  

Array comparative genome hybridization (aCGH) provides information about genomic aberrations. Alterations in the DNA copy number may cause the cell to malfunction, leading to cancer. Therefore, the identification of DNA amplifications or deletions across tumors may reveal key genes involved in cancer and improve our understanding of the underlying biological processes associated with the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号