首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   6篇
  2022年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   11篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有110条查询结果,搜索用时 125 毫秒
61.
VGF (nonacronymic) is a neuropeptide precursor that plays multiple roles in regulation of energy balance, reproduction, hippocampal synaptic plasticity, and pain. Data from a number of pain models showed significant up-regulation of VGF in sensory neurons. TLQP-21, one of the VGF-derived neuropeptides, has been shown to induce a hyperalgesic response when injected subcutaneously into the hind paw of mice. However, the precise role of VGF-derived neuropeptides in neuropathic pain and the molecular identity of the receptor for VGF-derived peptides are yet to be investigated. Here we identified gC1qR, the globular heads of the C1q receptor, as the receptor for TLQP-21 using chemical cross-linking combined with mass spectrometry analysis. TLQP-21 caused an increase in intracellular Ca2+ levels in rat macrophages and microglia. Inoculation of TLQP-21-stimulated macrophages into rat hind paw caused mechanical hypersensitivity. The increase in intracellular Ca2+ levels in macrophages was attenuated by either siRNA or neutralizing antibodies against gC1qR. Furthermore, application of the gC1qR-neutralizing antibody to rats with partial sciatic nerve ligation resulted in a delayed onset of nerve injury-associated mechanical hypersensitivity. These results indicate that gC1qR is the receptor for TLQP-21 and plays an important role in chronic pain through activation of macrophages. Because direct association between TLQP-21 and gC1qR is required for activation of macrophages and causes hypersensitivity, disrupting this interaction may be a useful new approach to develop novel analgesics.  相似文献   
62.
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N 1,N 11-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb–cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.  相似文献   
63.
Analyses of form-function relationships during heart looping are directly related to technological advances. Recent advances in four-dimensional optical coherence tomography (OCT) permit observations of cardiac dynamics at high-speed acquisition rates and high resolution. Real-time observation of the avian stage 13 looping heart reveals that interactions between the endocardial and myocardial compartments are more complex than previously depicted. Here we applied four-dimensional OCT to elucidate the relationships of the endocardium, myocardium, and cardiac jelly compartments in a single cardiac cycle during looping. Six cardiac levels along the longitudinal heart tube were each analyzed at 15 time points from diastole to systole. Using image analyses, the organization of mechanotransducing molecules, fibronectin, tenascin C, α-tubulin, and nonmuscle myosin II was correlated with specific cardiac regions defined by OCT data. Optical coherence microscopy helped to visualize details of cardiac architectural development in the embryonic mouse heart. Throughout the cardiac cycle, the endocardium was consistently oriented between the midline of the ventral floor of the foregut and the outer curvature of the myocardial wall, with multiple endocardial folds allowing high-volume capacities during filling. The cardiac area fractional shortening is much higher than previously published. The in vivo profile captured by OCT revealed an interaction of the looping heart with the extra-embryonic splanchnopleural membrane providing outside-in information. In summary, the combined dynamic and imaging data show the developing structural capacity to accommodate increasing flow and the mechanotransducing networks that organize to effectively facilitate formation of the trabeculated four-chambered heart.  相似文献   
64.
65.
The aim of the work was to evaluate whether or not there is glycolytic reprogramming in the neighboring cells of colorectal cancer (CRC). Using postoperative material we have compared the functional capacity of oxidative phosphorylation (OXPHOS) in CRC cells, their glycolytic activity and their inclination to aerobic glycolysis, with those of the surrounding and healthy colon tissue cells. Experiments showed that human CRC cannot be considered a hypoxic tumor, since the malignancy itself and cells surrounding it exhibited even higher rates of OXPHOS than healthy large intestine. The absence of acute hypoxia in colorectal carcinomas was also confirmed by their practically equal glucose-phosphorylating capacity as compared with surrounding non-tumorous tissue and by upregulation of VEGF family and their ligands. Studies indicated that human CRC cells in vivo exert a strong distant effect on the energy metabolism of neighboring cells, so that they acquire the bioenergetic parameters specific to the tumor itself. The growth of colorectal carcinomas was associated with potent downregulation of the creatine kinase system. As compared with healthy colon tissue, the tumor surrounding cells display upregulation of OXPHOS and have high values of basal and ADP activated respiration rates. Strong differences between the normal and CRC cells in the affinity of their mitochondria for ADP were revealed; the corresponding Km values were measured as 93.6±7.7 µM for CRC cells and 84.9±9.9 µM for nearby tissue; both these apparent Km (ADP) values were considerably (by almost 3 times) lower in comparison with healthy colon tissue cells (256±34 µM).  相似文献   
66.
Aim:  To evaluate the impact of the consumption of a synbiotic product on the antioxidative activity markers of blood in asymptomatic H. pylori -colonized persons.
Methods and Results:  Fifty-three healthy adult volunteers without gastric symptoms participated in a randomized, double-blind placebo-controlled study. The crossover consumption of the enterocoated capsules containing antioxidative Lactobacillus fermentum ME-3, Lact. paracasei 8700:2 and Bifidobacterium longum 46 with Raftilose P95 lasted for 3 weeks and did not change the H. pylori colonization. In H. pylori -positive subjects the sera values of total antioxidative status (TAS) were significantly lower compared to H. pylori -negative subjects (0·97 vs 1·05 mmol l−1, P  = 0·008). After the consumption of the synbiotic, TAS values (0·97 vs 1·03 mmol l−1, P  = 0·004) increased, while the ratio between oxidized and reduced glutathione (0·035 vs 0·030, P  = 0·016) decreased in H. pylori -positive subjects.
Conclusions:  The consumption of a synbiotic containing an antioxidative probiotic strain improved the reduced systemic antioxidative activity in H. pylori -colonized asymptomatic subjects.
Significance and Impact of the Study:  A synbiotic product containing an antioxidative probiotic strain may be useful in the reduction of systemic oxidative stress in H. pylori infection.  相似文献   
67.
The IgG Fc glycans strongly influence the Fcγ receptor interactions and Fc-mediated effector mechanisms. Changes in the structure of IgG glycans are associated with various diseases, such as infections and autoimmunity. However, the possible role of Fc glycans in tumor immunity is not yet fully understood. The aim of this study was to profile the Fc N-glycans of IgG samples from patients with gastric cancer (n = 80) and controls (n = 51) using LC-ESI-MS method to correlate the findings with stage of cancer and patients survival. Analysis of 32 different IgG N-glycans revealed significant increase of agalactosylated (GnGnF, GnGn(bi)F), and decrease of galactosylated (AGn(bi), AGn(bi)F, AA(bi), AAF) and monosialylated IgG glycoforms (NaAF, NaA(bi)) in cancer patients. A statistically significant increase of Fc fucosylation was observed in tumor stage II and III whereas reverse changes were found for the presence of bisecting GlcNAc. Higher level of fully sialylated glycans and elevated expression of glycans with bisecting GlcNAc were associated with better survival rate. Our findings provide the first evidence that the changes in Fc glycan profile may predict the survival of patients with gastric cancer. Cancer stage-dependent changes in Fc fucosylation and the bisecting N-acteylglucosamine expression as well as an association of several IgG glycoforms with the survival suggest that IgG glycosylation is related to pathogenesis of cancer and progression of the disease.  相似文献   
68.
In addition to cholesterol-lowering properties, statins exhibit lipid-independent immunomodulatory, anti-inflammatory actions. However, high concentrations are typically required to induce these effects in vitro, raising questions concerning therapeutic relevance. We present evidence that endothelial cell sensitivity to statins depends upon shear stress. Using heme oxygenase-1 expression as a model, we demonstrate differential heme oxygenase-1 induction by atorvastatin in atheroresistant compared with atheroprone sites of the murine aorta. In vitro, exposure of human endothelial cells to laminar shear stress significantly reduced the statin concentration required to induce heme oxygenase-1 and protect against H2O2-mediated injury. Synergy was observed between laminar shear stress and atorvastatin, resulting in optimal expression of heme oxygenase-1 and resistance to oxidative stress, a response inhibited by heme oxygenase-1 small interfering RNA. Moreover, treatment of laminar shear stress-exposed endothelial cells resulted in a significant fall in intracellular cholesterol. Mechanistically, synergy required Akt phosphorylation, activation of Kruppel-like factor 2, NF-E2-related factor-2 (Nrf2), increased nitric-oxide synthase activity, and enhanced HO-1 mRNA stability. In contrast, heme oxygenase-1 induction by atorvastatin in endothelial cells exposed to oscillatory flow was markedly attenuated. We have identified a novel relationship between laminar shear stress and statins, demonstrating that atorvastatin-mediated heme oxygenase-1-dependent antioxidant effects are laminar shear stress-dependent, proving the principle that biomechanical signaling contributes significantly to endothelial responsiveness to pharmacological agents. Our findings suggest statin pleiotropy may be suboptimal at disturbed flow atherosusceptible sites, emphasizing the need for more specific therapeutic agents, such as those targeting Kruppel-like factor 2 or Nrf2.The efficacy of 3-hydroxy-3-methylglutaryl-coenzyme A reductase antagonists (statins) in reducing low density lipoprotein cholesterol, cardiovascular morbidity, and mortality is widely recognized (1). The observation that beneficial actions of statins on vascular function are detectable prior to any fall in serum cholesterol, extend to normocholesterolemic patients and exceed those of other lipid-lowering drugs despite comparable falls in total cholesterol (2, 3), suggest the existence of low density lipoprotein-cholesterol-independent effects (4, 5). Judging from in vitro studies, these may include immunomodulatory, anti-inflammatory, anti-adhesive, anti-thrombotic, and cytoprotective actions (6). However, the experimental work demonstrating these pleiotropic effects has predominantly used statin concentrations exceeding those achieved by therapeutic dosing, raising questions concerning clinical relevance (4).Heme oxygenase-1 (HO-1)2 acts as the rate-limiting factor in the catabolism of heme into biliverdin, releasing free iron and carbon monoxide (CO). Biliverdin is subsequently converted to bilirubin by biliverdin reductase, whereas intracellular iron induces expression of heavy chain-ferritin and the opening of Fe2+ export channels (7). The biologic activity of HO-1 represents an important adaptive response in cellular homeostasis, as revealed by widespread inflammation and persistent endothelial injury in human HO-1 deficiency (8).Expression of HO-1 in atherosclerotic lesions, and its ability to inhibit vascular smooth muscle cell proliferation, exert anti-inflammatory, antioxidant, and antithrombotic effects, suggests a protective role during atherogenesis (9, 10). HMOX1 promoter polymorphisms affecting HO-1 expression may influence susceptibility to intimal hyperplasia and coronary artery disease, whereas a low serum bilirubin constitutes a cardiovascular risk factor (11). Moreover, overexpression of HO-1 inhibited atherogenesis, whereas Hmox1/ mice bred onto an ApoE−/− background developed more extensive and complex atherosclerotic plaques (12, 13).Recent interest has focused on the therapeutic potential of HO-1 and its products, with probucol, statins, rapamycin, nitric oxide donors, and aspirin being shown to induce HO-1 (reviewed in Ref. 10). Indeed, induction of HO-1 may represent an important component of the vasculoprotective profile of statins, with simvastatin, atorvastatin, and rosuvastatin variously shown to increase HMOX1 promoter activity and mRNA levels, to induce enzyme activity and increase antioxidant capacity in human endothelial cells (EC) (1418). However, induction of HO-1 in vascular EC in vivo has not yet been demonstrated.Vascular endothelium exposed to unidirectional, pulsatile laminar shear stress (LSS) >10 dynes/cm2 is relatively protected against atherogenesis. LSS increases nitric oxide (NO) biosynthesis, prolongs EC survival, and generates an anticoagulant, anti-adhesive cell surface. In contrast, endothelium exposed to disturbed blood flow, with low shear reversing or oscillatory flow patterns, such as that located at arterial branch points and curvatures, is atheroprone. Thus endothelial cells exposed to disturbed blood flow exhibit reduced levels of endothelial nitric-oxide synthase (eNOS), increased apoptosis, oxidative stress, permeability to low density lipoprotein, and leukocyte adhesion (19).The atheroprotective influence of unidirectional LSS and the overlap between these actions and those of statins led us to hypothesize that LSS increases endothelial responsiveness to statins. We demonstrate for the first time that treatment of mice with atorvastatin induces HO-1 expression in the aortic endothelium and that this occurs preferentially at sites exposed to LSS. In vitro, pre-conditioning human EC with an atheroprotective, but not an atheroprone waveform, significantly reduces the concentration of atorvastatin required to enhance HO-1-mediated cytoprotection against oxidant-induced injury. A synergistic relationship between LSS and statins is revealed, resulting in maximal Akt phosphorylation and dependence upon eNOS, Kruppel-like factor 2 (KLF2), and NF-E2-related factor-2 (Nrf2) activation.  相似文献   
69.
This report summarises our efforts in deriving, characterising and banking of 20 different human embryonic stem cell lines. We have derived a large number of human embryonic stem cell lines between 2001 and 2005. One of these cell lines was established under totally xeno-free culture conditions. In addition, several subclones have been established, including a karyoptypical normal clone from a trisomic mother line. A master cell banking system has been utilised in concert with an extensive characterisation programme, ensuring a supply of high quality pluripotent stem cells for further research and development. In this report we also present the first data on a proprietary novel antibody, hES-Cellect, that exhibits high specificity for undifferentiated hES cells. In addition to the traditional manual dissection approach of propagating hES cells, we here also report on the successful approaches of feeder-free cultures as well as single cell cultures based on enzymatic digestion. All culture systems used as reported here have maintained the hES cells in a karyotypical normal and pluripotent state. These systems also have the advantage of being the principal springboards for further scale up of cultures for industrial or clinical applications that would require vastly more cells that can be produced by mechanical means.  相似文献   
70.
The higher counts or particular groups (Firmicutes/Bacteroidetes) of intestinal microbiota are related to host metabolic reactions, supporting a balance of human ecosystem. We further explored whether intestinal lactobacilli were associated with some principal cellular and metabolic markers of blood in 38 healthy >65-year-old persons. The questionnaire, routine clinical and laboratory data of blood indices as much as the oxidized low-density lipoprotein (ox-LDL) and baseline diene conjugates in low-density lipoprotein (BDC-LDL) of blood sera were explored. The PCR-based intestinal Lactobacillus sp. composition and counts of cultivable lactobacilli (LAB) were tested. The facultative heterofermentative lactobacilli (Lactobacillus casei and Lactobacillus paracasei) were the most frequent (89 and 97%, respectively) species found, while Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus reuteri were present in almost half of the elderly persons. The number of species simultaneously colonizing the individuals ranged from 1 to 7 (median 4). In elderly consuming probiotics the LAB counts were significantly higher than in these not consuming (median 7.8, range 4.2–10.8 vs. median 6.3, range 3.3–9.7 log cfu/g; p = 0.005), adjusted (OR = 1.71, CI95 1.04–2.82; p = 0.035) for age and body mass index (BMI). The colonization by L. acidophilus was negatively related (r = ?0.367, p = 0.0275) to L. reuteri, staying significant after adjusting for age, sex and BMI (OR = 0.16, CI95 0.04–0.73; p = 0.018). However, the blood glucose concentration showed a tendency for a negative correlation for colonization with Lactobacillus fermentum (r = ?0.309, p = 0.062) adjusted for BMI (Adj. R2 = 0.181; p = 0.013) but not for age and sex. The higher white blood cells (WBC) count was positively related (r = 0.434, p = 0.007) to presence of Lactobacillus reuteri adjusted for age, sex and BMI (Adj. R2 = 0.193, p = 0.027). The lower values of ox-LDL were predicted by higher counts of cultivable lactobacilli adjusted by sex, age and BMI (r = ?0.389, p = 0.016; Adj. R2 = 0.184 p = 0.029). In conclusion, the pilot study of elderly persons shows that the intestinal lactobacilli are tightly associated with WBC count, blood glucose and content of ox-LDL which all serve as risk markers in pathogenesis of inflammation, metabolic syndrome and cardiovascular disease (CVD).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号