首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2113篇
  免费   122篇
  国内免费   4篇
  2023年   7篇
  2022年   13篇
  2021年   51篇
  2020年   18篇
  2019年   37篇
  2018年   46篇
  2017年   53篇
  2016年   51篇
  2015年   108篇
  2014年   106篇
  2013年   162篇
  2012年   175篇
  2011年   147篇
  2010年   105篇
  2009年   111篇
  2008年   145篇
  2007年   138篇
  2006年   113篇
  2005年   133篇
  2004年   101篇
  2003年   103篇
  2002年   90篇
  2001年   12篇
  2000年   11篇
  1999年   20篇
  1998年   18篇
  1997年   8篇
  1996年   12篇
  1995年   14篇
  1994年   3篇
  1992年   14篇
  1991年   13篇
  1990年   10篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   11篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1972年   5篇
  1971年   2篇
  1970年   3篇
  1965年   3篇
排序方式: 共有2239条查询结果,搜索用时 78 毫秒
991.
992.
993.
Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [14C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [14C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.  相似文献   
994.
POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.  相似文献   
995.
Oh-hashi K  Kunieda R  Hirata Y  Kiuchi K 《FEBS letters》2011,585(15):2481-2487
In this study, we found that Cysteine-rich with EGF-like domains 2 (CRELD2), a novel endoplasmic reticulum stress-inducible protein, is not only localized in the ER-Golgi apparatus but also spontaneously secreted. Deletion of four C-terminal amino acids from mouse CRELD2 or addition of tag-peptides to its C-terminus dramatically enhanced CRELD2 secretion. Intra- and extra-cellular CRELD2 is differentially glycosylated and its spontaneous secretion was significantly prevented by overexpression of a dominant negative mutant Sar1 and treatment with brefeldin A. Overexpression of wild-type GRP78 remarkably enhanced the secretion of wild-type but not mutant CRELD2. Our results demonstrate both that CRELD2 is a novel secretory glycoprotein regulated by Sar1 and GRP78 and that the C-terminal of CRELD2 plays a crucial role in its secretion.  相似文献   
996.
997.
998.
999.
Chloroquine, a widely used anti-malarial and anti-rheumatoid agent, has been reported to induce apoptotic and non-apoptotic cell death. Accumulating evidence now suggests that chloroquine can sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis by inhibiting autophagy. However, chloroquine is reported to induce GM1 ganglioside accumulation in cultured cells at low μM concentrations and prevent damage to the blood brain barrier in mice. It remains unknown whether chloroquine has neuroprotective properties at concentrations below its reported ability to inhibit lysosomal enzymes and autophagy. In the present study, we demonstrated that chloroquine protected mouse hippocampal HT22 cells from glutamate-induced oxidative stress by attenuating production of excess reactive oxygen species. The concentration of chloroquine required to rescue HT22 cells from oxidative stress was much lower than that sufficient enough to induce cell death and inhibit autophagy. Chloroquine increased GM1 level in HT22 cells at low μM concentrations but glutamate-induced cell death occurred before GM1 accumulation, suggesting that GM1 induction is not related to the protective effect of chloroquine against glutamate-induced cell death. Interestingly, BD1047 and NE-100, sigma-1 receptor antagonists, abrogated the protective effect of chloroquine against glutamate-induced cell death and reactive oxygen species production. In addition, cutamesine (SA4503), a sigma-1 receptor agonist, prevented both glutamate-induced cell death and reactive oxygen species production. These findings indicate that chloroquine at concentrations below its ability to inhibit autophagy and induce cell death is able to rescue HT22 cells from glutamate-induced cell death by reducing excessive production of reactive oxygen species through sigma-1 receptors. These results suggest potential use of chloroquine, an established anti-malarial agent, as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases.  相似文献   
1000.
We have recently shown that a 24 amino acid Humanin (HN) adopts an anti-parallel β-sheet structure in the presence of a negatively charged 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) and suggested a possibility that it interacts with lipid membranes and thereby exerts neuroprotective effects through the target cell surface receptors or the intracellular signaling molecules following membrane interaction events. The structures of two HN analogs, having either a S7A mutation or a S14G mutation, were examined under the identical conditions, as the S7A analog is inactive and the S14G analog is 1000-fold more active than the wild type HN. These analogs showed a secondary structure indistinguishable from the structure of HN in the presence of DOPG liposome, while unrelated peptides were disordered with and without DOPG. It thus appeared that HN and the analogs, regardless of the biological activities, have an ability to interact with DOPG liposome and form an anti-parallel β-sheet structure. While the wild type HN and the S7A and S14G analogs were largely disordered in buffer, the S14G analog showed greater stability as a disordered structure in the buffer at a physiological temperature, suggesting that it maintains the disordered structure presumably required for the interaction with the DOPG liposome and thereby greater neuroprotective activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号