首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1724篇
  免费   105篇
  2022年   9篇
  2021年   18篇
  2020年   10篇
  2019年   16篇
  2018年   23篇
  2017年   14篇
  2016年   29篇
  2015年   60篇
  2014年   55篇
  2013年   61篇
  2012年   79篇
  2011年   91篇
  2010年   57篇
  2009年   45篇
  2008年   67篇
  2007年   75篇
  2006年   87篇
  2005年   70篇
  2004年   84篇
  2003年   80篇
  2002年   71篇
  2001年   55篇
  2000年   46篇
  1999年   56篇
  1998年   27篇
  1997年   22篇
  1996年   15篇
  1995年   13篇
  1994年   15篇
  1993年   11篇
  1992年   36篇
  1991年   34篇
  1990年   36篇
  1989年   35篇
  1988年   37篇
  1987年   37篇
  1986年   30篇
  1985年   28篇
  1984年   16篇
  1983年   25篇
  1982年   18篇
  1981年   7篇
  1980年   12篇
  1979年   12篇
  1978年   11篇
  1977年   16篇
  1976年   13篇
  1975年   14篇
  1974年   8篇
  1972年   7篇
排序方式: 共有1829条查询结果,搜索用时 15 毫秒
91.
Abstract: Rat brain was found to enzymatically methylate phospholipids to form phosphatidylcholine with S -adenosyl- l -methionine serving as the methyl donor. Methyltransferase activity was localized in the microsomes and synaptosomes. In synaptosomes, at least two enzymes were found to be involved in the formation of phosphatidylcholine. The first methyltransferase which catalyzes the methylation of phosphatidylethanolamine to form phosphatidyl- N -monomethylethanolamine was found to have a pH optimum of 7.5, a low Km for 5-adenosyl- l -methionine and a partial requirement for Mg2. Methyltransferase I is tightly bound to membranes. The second methyltransferase (II) catalyzes the successive methylations of phosphatidyl- N -monomethylethanolamine to phosphatidyl- N , N -dimethylethanolamine and then to phosphatidylcholine. In contrast to methyltransferase I, methyltransferase II has a pH optimum of 10.5, a high apparent Km for S -adenosyl- l -methionine and no requirement for Mg2. Methyltransferase II is easily solubilized by sonication. The highest specific activity for both enzymes was found in the synaptosomal plasma membrane.  相似文献   
92.
Catharanthine and akuammicine, together with ajmalicine and strictosidine, were isolated from a culture strain of Catharanthus roseus suspension cells. The biosynthetic capability of the cultured cells to produce akuammicine, catharanthine and vindoline was confirmed by feeding experiments with dl-tryptophan-[3-14C] to yield the radioactive alkaloids.  相似文献   
93.
Radioisotopically labelled l-leucine and l-valine were fed to Pisum sativum and incorporated into squalene and β-amyrin. Chemical degradation of the radioactive squalene revealed an equal distribution of the radioactivity in the isopentenyl pyrophosphate(IPP)-derived and the 3,3-dimethylallyl pyrophosphate(DMAPP)-derived moieties of the squalene molecule, unlike the unbalanced distribution in favour of the DMAPP-derived moiety of a monoterpenoid molecule biosynthesized from these amino acids by higher plants.  相似文献   
94.
Ultrastructure of the mating tube formed in yeast haplont of the heterobasidiomycete Tremella mesenterica was studied by electron microscopy. Cell wall of the mating tube emerged as evagination of the inner layers, rupturing outer layers of the mother cell wall. Comparison with budding cells suggested that the tube emergence place at bud scar and the process of tube emergence was the same as that of bud emergence. Electron transparent vesicles of 0.1 m diameter were scattered in the cytoplasm of the mating tube. Nucleus-associated organelle was located at one side of the nuclear envelope which extended towards the mating tube. A few microtubules were detected in the mating tube, but their association with a nucleus was not clear. The cytoplasmic structure of the mating tube was discussed in comparison with that of hyphae of the filamentous fungi.  相似文献   
95.
H+-Translocating ATPase, which catalyzes ATP synthesis in biomembranes, is composed of a head piece (F1) and a membrane moiety (F0). Using highly-purified F0 from a thermophilic bacterium PS3 (TF0), the following results were obtained. 1. Inhibition by N,N'-dicyclohexylcarbodiimide (DCCD) of H+ conduction through TF0 followed pseudo-first-order kinetics. The second-order rate constant for inhibitor-enzyme interaction was 5 times 10(3) M(-1)-min(-1). 2. H+ conductivity blocked by DCCD was proportional to the amount of DCCD incorporated in the band 8 protein of TF0. When only one-third of the band 8 protein was labeled with DCCD, TF0 hardly transported any H+. 3. By extracting TF0 with chloroform-methanol, the band 8 protein was obtained as a proteolipid. Polyacrylamide gel electrophoresis with dodecyl sulfate and urea showed that the molecular weight was about 6,000. 4. The amino acid composition of band 8 protein indicated that this protein contained an extremely high percentage of hydrophobic amino acids (0.29 in polarity) and was devoid of histidine, tryptophan, cysteine, and lysine. Its minimum molecular weight was 6,500. 5. The role of band 8 protein (DCCD-binding protein) in H+ conduction through TF0 is discussed on the basis of these results.  相似文献   
96.
97.
Sera from inbred SPF White Leghorn chickens at 6 weeks or 19-22 months of age did not have anti-OA agglutinins as determined by the passive HA reaction; 2-day-old chicks also lacked the anti-OA activity. Inbred chickens kept in SPF isolators for 6 weeks, then transferred to a conventional environment for 7 weeks, produced anti-OA agglutinins. Inbred White Leghorn adult chickens conventionally reared had a high anti-OA agglutinin titer. It appeared that natural anti-OA agglutinin s are elaborated in response to environmental pathogens in certain lines of chickens. The titer in the individual chicken appeared as early as 10 weeks and was maintained until old age. The presence of natural anti-OA agglutinins did not prevent egg-laying but appears to have delayed it. The HA reaction is specific and can be absorbed.  相似文献   
98.
Summary The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with -MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla.From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   
99.
Radioimmunoassay technique for measuring 5α,7α-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, the main urinary metabolite of PGF1α and PGF2α (PGF2α-MUM), was further improved.It was postulated based on some experimental data that the PGF2α-MUM exists in the urine mostly as dioic acid form, not as δ-lactone formThe daily excretion of PGF2α-MUM in men ranged from 14.43 μg to 36.14 μg and in women from 5.21 μg to 14.25 μg.  相似文献   
100.
The excretion rates of main urinary metabolite of PG F2α were measured radioimmunologically in 4 healthy persons and in 13 essential hypertensives. The resting values were 9.3±0.73 in the former and 10.4±2.17 ng/min in the latter. There was no significant differences between them. The excretion of the metabolite decresed prominently after the administration of furosemide. The percent decrease was 57% in healthy persons and 70% in essential hypertension. The percent result supports that furosemide inhibit the catabolism of PG F2α.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号