首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   23篇
  2021年   3篇
  2020年   2篇
  2017年   7篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   9篇
  2012年   10篇
  2011年   15篇
  2010年   2篇
  2009年   13篇
  2008年   15篇
  2007年   7篇
  2006年   9篇
  2005年   15篇
  2004年   15篇
  2003年   18篇
  2002年   13篇
  2001年   3篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1983年   3篇
  1976年   1篇
  1975年   1篇
  1973年   4篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1956年   1篇
  1952年   1篇
  1949年   2篇
  1938年   1篇
  1937年   1篇
  1936年   2篇
  1934年   2篇
  1926年   2篇
  1924年   1篇
  1890年   2篇
  1888年   1篇
  1887年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
101.
102.
103.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the “molecular ruler” model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the “premyofibril” model, which proposes that thick filament formation does not require titin, but that a “premyofibril” consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the “molecular ruler” model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy.  相似文献   
104.
Bottle gourd (Lagenaria sicerar ia Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the Arabidopsis AVP1 gene that encodes a vacuolar H+-pyrophosphatase. The drought resistance of AVP1-expressing and wild-type plants was assessed by growing plants under drought conditions. After 12 days of water deprivation, both AVP1-expressing and wild-type plants demonstrated reduced growth. After 10 days of re-watering, wild-type plants showed minimal growth while the AVP1-expressing plants resumed rapid growth. Further, AVP1-expressing plants displayed longer primary roots and more robust root systems than wild-type plants.  相似文献   
105.
106.
Kim CK  Han JS  Lee HS  Oh JY  Shigaki T  Park SH  Hirschi K 《Plant cell reports》2006,25(11):1226-1232
Previously, we made a chimeric Arabidopsis thaliana vacuolar transporter CAX2B [a variant of N-terminus truncated form of CAX2 (sCAX2) containing the “B” domain from CAX1] that has enhanced calcium (Ca2+) substrate specificity and lost the manganese (Mn2+) transport capability of sCAX2. Here, we demonstrate that potato (Solanum tuberosum L.) tubers expressing the CAX2B contain 50–65% more calcium (Ca2+) than wild-type tubers. Moreover, expression of CAX2B in potatoes did not show any significant increase of the four metals tested, particularly manganese (Mn2+). The CAX2B-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through the successive generations and showed no deleterious alternations on plant growth and development. These results demonstrate the enhanced substrate specificity of CAX2B in potato. Therefore, CAX2B can be a valuable tool for Ca2+ nutrient enrichment of potatoes with reduced accumulation of undesirable metals.  相似文献   
107.
The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this ‘waste’ product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under free-living conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg).  相似文献   
108.
Figure can add value to wood products, but its occurrence is unpredictable. A first step in reliably producing figured wood is determining whether it is faithfully transmitted to progeny via sexual and asexual reproduction. We describe a 26-year-old male aspen genotype, designated ‘Curly Poplar’, which was shown to be a Populus × canescens hybrid using microsatellite markers. All rooted cuttings of this genotype exhibited an undulating pattern on the radial surface that was not seen in the control trees, all of which showed a smooth radial surface and straight grain. We observed spiral grain with a magnitude of 2.77 ± 0.12°/cm from vertical in 11-month-old, field-grown rooted Curly Poplar cuttings, but spiral grain was not apparent in wood from the 26-year-old mature ortet that supplied these cuttings. Veneer cut from the mature tree exhibited a novel type of figure that we called ‘Scattered Moiré’. Reciprocal grafts between Curly Poplar and various non-figured aspens showed that a graft-transmissible signals did not appear to be involved in figure formation in Curly Poplar or the induction of figure in straight-grained trees. Curly Poplar was crossed to a straight-grained clone to test the inheritance of the gene(s) responsible for figure. Samples from the resulting population revealed that 79 out of 377 seedlings exhibited figure. A Chi-square test led to the rejection of a 1:1 segregation ratio between figured and non-figured phenotypes (p < 0.01), but not of a 1:3 segregation ratio (p 0.0793). Overall, these analyses showed that figure in Curly Poplar is under genetic control, but its inheritance may not be simple.  相似文献   
109.
Plant calcium (Ca(2+)) gradients, millimolar levels in the vacuole and micromolar levels in the cytoplasm, are regulated in part by high-capacity vacuolar cation/H(+) exchangers (CAXs). Several CAX transporters, including CAX1, appear to contain an approximately 40-amino acid N-terminal regulatory region (NRR) that modulates transport through N-terminal autoinhibition. Deletion of the NRR from several CAXs (sCAX) enhances function in plant and yeast expression assays; however, to date, there are no functional assays for CAX3 (or sCAX3), which is 77% identical and 91% similar in sequence to CAX1. In this report, we create a series of truncations in the CAX3 NRR and demonstrate activation of CAX3 in both yeast and plants by truncating a large portion (up to 90 amino acids) of the NRR. Experiments with endomembrane-enriched vesicles isolated from yeast expressing activated CAX3 demonstrate that the gene encodes Ca(2+)/H(+) exchange with properties distinct from those of CAX1. The phenotypes produced by activated CAX3-expressing in transgenic tobacco lines are also distinct from those produced by sCAX1-expressing plants. These studies demonstrate shared and unique aspects of CAX1 and CAX3 transport and regulation.  相似文献   
110.
Fragile X syndrome (FXS), caused by loss of fragile X mental retardation 1 (FMR1) gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 product (FMRP) is an RNA-binding protein best established to function in activity-dependent modulation of synaptic connections. In the Drosophila FXS disease model, loss of functionally-conserved dFMRP causes synaptic overgrowth and overelaboration in pigment dispersing factor (PDF) peptidergic neurons in the adult brain. Here, we identify a very different component of PDF neuron misregulation in dfmr1 mutants: the aberrant retention of normally developmentally-transient PDF tritocerebral (PDF-TRI) neurons. In wild-type animals, PDF-TRI neurons in the central brain undergo programmed cell death and complete, processive clearance within days of eclosion. In the absence of dFMRP, a defective apoptotic program leads to constitutive maintenance of these peptidergic neurons. We tested whether this apoptotic defect is circuit-specific by examining crustacean cardioactive peptide (CCAP) and bursicon circuits, which are similarly developmentally-transient and normally eliminated immediately post-eclosion. In dfmr1 null mutants, CCAP/bursicon neurons also exhibit significantly delayed clearance dynamics, but are subsequently eliminated from the nervous system, in contrast to the fully persistent PDF-TRI neurons. Thus, the requirement of dFMRP for the retention of transitory peptidergic neurons shows evident circuit specificity. The novel defect of impaired apoptosis and aberrant neuron persistence in the Drosophila FXS model suggests an entirely new level of “pruning” dysfunction may contribute to the FXS disease state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号