首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8296篇
  免费   988篇
  国内免费   4篇
  2021年   129篇
  2020年   87篇
  2019年   117篇
  2018年   112篇
  2017年   108篇
  2016年   144篇
  2015年   298篇
  2014年   280篇
  2013年   318篇
  2012年   449篇
  2011年   467篇
  2010年   252篇
  2009年   226篇
  2008年   353篇
  2007年   400篇
  2006年   358篇
  2005年   339篇
  2004年   332篇
  2003年   308篇
  2002年   337篇
  2001年   200篇
  2000年   200篇
  1999年   168篇
  1998年   105篇
  1997年   98篇
  1996年   90篇
  1995年   88篇
  1994年   78篇
  1993年   87篇
  1992年   121篇
  1991年   149篇
  1990年   114篇
  1989年   121篇
  1988年   134篇
  1987年   96篇
  1986年   96篇
  1985年   103篇
  1984年   139篇
  1983年   93篇
  1982年   98篇
  1981年   90篇
  1980年   72篇
  1979年   89篇
  1978年   85篇
  1977年   74篇
  1976年   71篇
  1975年   61篇
  1974年   89篇
  1973年   82篇
  1971年   67篇
排序方式: 共有9288条查询结果,搜索用时 109 毫秒
991.
Lecchi S  Allen KE  Pardo JP  Mason AB  Slayman CW 《Biochemistry》2005,44(50):16624-16632
Yeast Pma1 H(+)-ATPase, which belongs to the P-type family of cation-transporting ATPases, is activated up to 10-fold by growth on glucose, and indirect evidence has linked the activation to Ser/Thr phosphorylation within the C-terminal tail. We have now used limited trypsinolysis to map glucose-induced conformational changes throughout the 100 kDa ATPase. In the wild-type enzyme, trypsin cleaves first at Lys-28 and Arg-73 in the extended N-terminal segment (sites T1 and T2); subsequent cleavages occur at Arg-271 between the A domain and M3 (site T3) and at Lys-749 or Lys-754 in the M6-M7 cytoplasmic loop (site T4). Activation by glucose leads to a striking increase in trypsin sensitivity. At the C-terminal end of the protein, the Arg- and Lys-rich tail is shielded from trypsin in membranes from glucose-starved cells (GS) but becomes accessible in membranes from glucose-metabolizing cells (GM). In the presence of orthovanadate, Lys-174 at the boundary between M2 and the A domain also becomes open to cleavage in GM but not GS samples (site T5). Significantly, this global conformational change can be suppressed by mutations at Thr-912, a consensus phosphorylation site near the C-terminus. Substitution by Ala at position 912 leads to a GS-like (trypsin-resistant) state, while substitution by Asp leads to a GM-like (trypsin-sensitive) state. Thus, the present results help to dissect the intramolecular movements that result in glucose activation.  相似文献   
992.
Helicobacter pylori (Hp) infection triggers a chronic influx of polymorphonuclear leukocyte neutrophils (PMNs) into the gastric mucosa. Although Hp reside in a neutrophil-rich environment, how these organisms evade phagocytic killing is largely unexplored. We now show that live Hp (strains 11637, 60190, DT61A, and 11916) are readily ingested by PMNs and induce a rapid and strong respiratory burst that is comparable to PMA. Relative to other particulate stimuli, Hp are more potent activators of PMNs than opsonized zymosan, Staphylococcus aureus, or Salmonella. Strikingly, biochemical and microscopic analyses demonstrate that Hp disrupt NADPH oxidase targeting such that superoxide anions are released into the extracellular milieu and do not accumulate inside Hp phagosomes. Specifically, nascent Hp phagosomes acquire flavocytochrome b558 but do not efficiently recruit or retain p47phox or p67phox. Superoxide release peaks at 16 min coincident with the appearance of assembled oxidase complexes in patches at the cell surface. Oxidant release is regulated by formalin-resistant and heat-sensitive bacterial surface factors distinct from urease and Hp(2-20). Following opsonization with fresh serum, Hp triggers a modest respiratory burst that is confined to the phagosome, and ingested bacteria are eliminated. We conclude that disruption of NADPH oxidase targeting allows unopsonized Hp to escape phagocytic killing, and our findings support the hypothesis that bacteria and PMNs act in concert to damage the gastric mucosa.  相似文献   
993.
Peripheral tolerance to shared Ags expressed on both tumors and normal self-tissues presents a major barrier to T cell-based immunotherapy as a treatment for cancer. To assess the activity of tumor-specific T cells against spontaneously arising carcinomas in the context of shared Ag expression, we developed a model system whereby an identified tumor Ag, tumor ERK (tERK), is expressed transgenically on both normal mammary tissue and spontaneous mammary carcinomas. Transfer of in vitro-activated, tERK-specific DUC18 T cells delayed spontaneous tumor development in tERK-expressing mice when T cells were given before the development of palpable carcinomas. However, antitumor activity mediated by in vitro-activated DUC18 T cells, as measured by responsiveness against a transplanted tERK-expressing fibrosarcoma challenge, was lost within days of transfer. This loss was due to expression of tERK as a self-Ag on normal tissues and was independent of the presence of mammary tumors. In contrast, transferred naive DUC18 T cells maintained a long-term protective function in tERK-expressing mice. Ten-fold fewer naive T cells activated in vivo were able to replicate the delay in spontaneous tumor development achieved by in vitro-activated T cells. These results are in contrast to our earlier studies using transplanted tumors alone, in which in vitro-activated DUC18 T cells were more efficacious than naive DUC18 T cells and highlight the need to perform tumor studies in the presence of tumor Ag expression on normal self-tissue.  相似文献   
994.
995.
996.
Biochemical and mechanical properties of subchondral bone in osteoarthritis   总被引:2,自引:0,他引:2  
Bailey AJ  Mansell JP  Sims TJ  Banse X 《Biorheology》2004,41(3-4):349-358
The subchondral bone has long been known to thicken in osteoarthritis. However, recent evidence has demonstrated that the turnover of the bone is increased several fold, and further suggests that the thickening occurs prior to degradation of the articular cartilage, indicating that it plays a role in the pathogenesis of osteoarthritis. The mechanical and biochemical properties of the subchondral bone are therefore of particular interest in any attempt to determine the nature of the factors initiating osteoarthritis. We have shown that the subchondral bone collagen of the femoral head possessed a 20-fold increase in turnover, as assessed by procollagen rate of synthesis and metalloproteinase degradation, and a 25% decrease in mineralisation. This increased metabolism and high lysyl hydroxylation leads to narrower and weaker fibres. Additionally the phenotypic expression of the osteoblasts is modified to produce increasing proportions of type I homotrimer in addition to the normal type I heterotrimer, which further reduces the mechanical strength of the bone. Overall, the narrow immature collagen fibres, the reduction in pyrrole cross-linking, decreased mineralisation, and increased amounts of type I homotrimer, all contribute to a weakening of the mechanical properties of the subchondral bone.  相似文献   
997.
The effect of mechanical wounding or foliar diseases caused by Sclerotinia homoeocarpa or Rhizoctonia solani on the epiphytic yeast communities on creeping bentgrass and tall fescue were determined by leaf washing and dilution plating. Total yeast communities on healthy bentgrass and tall fescue leaves ranged from 7.9 x 103 to 1.4 x 105 CFU.cm-2 and from 2.4 x 103 to 1.6 x 104 CFU.cm-2, respectively. Mechanically wounded leaves (1 of 2 trials) and leaves with disease lesions (11 of 12 trials) supported significantly larger communities of phylloplane yeasts. Total yeast communities on S. homoeocarpa infected or R. solani infected bentgrass leaves were 3.6-10.2 times and 6.2-6.4 times larger, respectively, than the communities on healthy leaves. In general, healthy and diseased bentgrass leaves supported larger yeast communities than healthy or diseased tall fescue leaves. We categorized the majority of yeasts as white-pigmented species, including Cryptococcus laurentii, Cryptococcus flavus, Pseudozyma antarctica, Pseudozyma aphidis, and Pseudozyma parantarctica. The percentage of pink yeasts in the total yeast community ranged from 2.6% to 9.9% on healthy leaves and increased to 32.0%-44.7% on S. homoeocarpa infected leaves. Pink-pigmented yeasts included Rhodotorula glutinis, Rhodotorula mucilaginosa, Sakaguchia dacryoidea, and Sporidiobolus pararoseus. Foliar disease significantly affected community size and composition of epiphytic yeasts on bentgrass and tall fescue.  相似文献   
998.
The effect of cigarette smoke extract (CSE) on S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and sulfur amino acid metabolism was examined in human lung epithelial-like (A549) cells exposed to various CSE concentrations (2.5-100%) for 24 or 48 h. Intracellular SAM and SAM/SAH ratio were elevated after exposure to CSE for 48 h. Cell SAH content decreased, but the effect was not consistent. Cellular cystathionine, cysteine, and methionine levels were increased after CSE exposure for 48h. Sub-acute exposure to CSE induced increases in cellular SAM and SAM/SAH ratio. The transsulfuration pathway was likely activated by CSE since cystathionine increased, potentially contributing to the increased total intracellular GSH content.  相似文献   
999.
The oxidized "as isolated" form of Paracoccus pantotrophus cytochrome cd1 nitrite reductase has a bis-histidinyl coordinated c heme and a histidine/tyrosine coordinated d1 heme. This form of the enzyme has previously been shown to be kinetically incompetent. Upon reduction, the coordination of both hemes changes and the enzyme is kinetically activated. Here, we show that P. pantotrophus NapC, a tetraheme c-type cytochrome belonging to a large family of such proteins, is capable of reducing, and hence activating, "as isolated" cytochrome cd1. NapC is the first protein from P. pantotrophus identified as being capable of this activation step and, given the periplasmic co-location and co-expression of the two proteins, is a strong candidate to be a physiological activation partner.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号