首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13093篇
  免费   1368篇
  国内免费   7篇
  2021年   132篇
  2020年   99篇
  2019年   137篇
  2018年   167篇
  2017年   147篇
  2016年   230篇
  2015年   428篇
  2014年   455篇
  2013年   610篇
  2012年   804篇
  2011年   770篇
  2010年   492篇
  2009年   465篇
  2008年   722篇
  2007年   718篇
  2006年   649篇
  2005年   679篇
  2004年   635篇
  2003年   615篇
  2002年   553篇
  2001年   275篇
  2000年   248篇
  1999年   233篇
  1998年   181篇
  1997年   149篇
  1996年   144篇
  1995年   119篇
  1994年   112篇
  1993年   117篇
  1992年   184篇
  1991年   163篇
  1990年   144篇
  1989年   176篇
  1988年   154篇
  1987年   149篇
  1986年   120篇
  1985年   145篇
  1984年   121篇
  1983年   124篇
  1982年   116篇
  1981年   104篇
  1980年   116篇
  1979年   123篇
  1978年   91篇
  1977年   105篇
  1976年   90篇
  1975年   86篇
  1974年   97篇
  1973年   85篇
  1972年   70篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
The purpose of this paper is to deduce whether the maximum force, steplike movement, and rate of ATP consumption of kinesin, as measured in buffer, are sufficient for the task of fast transport of vesicles in cells. Our results show that moving a 200-nm vesicle in viscoelastic COS7 cytoplasm, with the same steps as observed for kinesin-driven beads in buffer, required a maximum force of 16 pN and work per step of 1 +/- 0.7 ATP, if the drag force was assumed to decrease to zero between steps. In buffer, kinesin can develop a force of 6-7 pN while consuming 1 ATP/step, comparable to the required values. As an alternative to assuming that the force vanishes between steps, the measured COS7 viscoelasticity was extrapolated to zero frequency by a numerical fit. The force required to move the bead then exceeded 75 pN at all times and peaked briefly to 92 pN, well beyond the measured capabilities of a single kinesin in buffer. The work per step increased to 7 +/- 5 ATP, greatly exceeding the energy available to a single motor.  相似文献   
982.
A Ca(2+) spark arises when a cluster of sarcoplasmic reticulum (SR) channels (ryanodine receptors or RyRs) opens to release calcium in a locally regenerative manner. Normally triggered by Ca(2+) influx across the sarcolemmal or transverse tubule membrane neighboring the cluster, the Ca(2+) spark has been shown to be the elementary Ca(2+) signaling event of excitation-contraction coupling in heart muscle. However, the question of how the Ca(2+) spark terminates remains a central, unresolved issue. Here we present a new model, "sticky cluster," of SR Ca(2+) release that simulates Ca(2+) spark behavior and enables robust Ca(2+) spark termination. Two newly documented features of RyR behavior have been incorporated in this otherwise simple model: "coupled gating" and an opening rate that depends on SR lumenal [Ca(2+)]. Using a Monte Carlo method, local Ca(2+)-induced Ca(2+) release from clusters containing between 10 and 100 RyRs is modeled. After release is triggered, Ca(2+) flux from RyRs diffuses into the cytosol and binds to intracellular buffers and the fluorescent Ca(2+) indicator fluo-3 to produce the model Ca(2+) spark. Ca(2+) sparks generated by the sticky cluster model resemble those observed experimentally, and Ca(2+) spark duration and amplitude are largely insensitive to the number of RyRs in a cluster. As expected from heart cell investigation, the spontaneous Ca(2+) spark rate in the model increases with elevated cytosolic or SR lumenal [Ca(2+)]. Furthermore, reduction of RyR coupling leads to prolonged model Ca(2+) sparks just as treatment with FK506 lengthens Ca(2+) sparks in heart cells. This new model of Ca(2+) spark behavior provides a "proof of principle" test of a new hypothesis for Ca(2+) spark termination and reproduces critical features of Ca(2+) sparks observed experimentally.  相似文献   
983.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   
984.
985.
The calcineurin inhibitor cyclosporine A (CsA) modulates leukocyte cytokine production but may also effect nonimmune cells, including microvascular endothelial cells, which regulate the inflammatory process through leukocyte recruitment. We hypothesized that CsA would promote a proinflammatory phenotype in human intestinal microvascular endothelial cells (HIMEC), by inhibiting inducible nitric-oxide synthase (iNOS, NOS2)-derived NO, normally an important mechanism in limiting endothelial activation and leukocyte adhesion. Primary cultures of HIMEC were used to assess CsA effects on endothelial activation, leukocyte interaction, and the expression of iNOS as well as cell adhesion molecules. CsA significantly increased leukocyte binding to activated HIMEC, but paradoxically decreased endothelial expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule-1). In contrast, CsA completely inhibited the expression of iNOS in tumor necrosis factor-alpha/lipopolysaccharide-activated HIMEC. CsA blocked p38 MAPK phosphorylation in activated HIMEC, a key pathway in iNOS expression, but failed to inhibit NFkappaB activation. These studies demonstrate that CsA exerts a proinflammatory effect on HIMEC by blocking iNOS expression. CsA exerts a proinflammatory effect on the microvascular endothelium, and this drug-induced endothelial dysfunction may help explain its lack of efficacy in the long-term treatment of chronically active inflammatory bowel disease.  相似文献   
986.
Intracellular signaling by protein tyrosine phosphorylation is generally understood to govern many aspects of cellular behavior. The biological consequences of this signaling pathway are important because the levels of protein tyrosine phosphorylation are frequently elevated in cancer cells. In the classic paradigm, tyrosine kinases promote tumor cell growth, survival, and invasiveness, whereas tyrosine phosphatases negatively regulate these same behaviors. Here, we identify one particular tyrosine phosphatase, low molecular weight tyrosine phosphatase (LMW-PTP), which is frequently overexpressed in transformed cells. We also show that overexpression of LMW-PTP is sufficient to confer transformation upon non-transformed epithelial cells. Notably, we show that the EphA2 receptor tyrosine kinase is a prominent substrate for LMW-PTP and that the oncogenic activities of LMW-PTP result from altered EphA2 expression and function. These results suggest a role for LMW-PTP in transformation progression and link its oncogenic potential to EphA2.  相似文献   
987.
During Drosophila development, the naked cuticle (nkd) gene attenuates wingless/Wnt signaling through a negative feedback loop mechanism. Fly and vertebrate Nkd proteins contain a putative calcium-binding EF-hand motif, the EFX domain, that interacts with the basic/PDZ region of the Wnt signal transducer, dishevelled (Dsh). Here we show that Dsh binding by Drosophila Nkd in vitro is mediated by the EFX domain as well as an adjacent C-terminal sequence. In vivo data suggest that both of these regions contribute to the ability of Nkd to antagonize Wnt signaling. Mutations in the Nkd EF-hand designed to eliminate potential ion binding affected Nkd-Dsh interactions in the yeast two-hybrid assay but not in the glutathione S-transferase pull-down assay. Addition of the chelating agent EDTA abolished the in vitro Nkd-Dsh interaction. Surprisingly zinc, but not calcium, was able to restore Nkd-Dsh binding, suggesting a zinc-mediated interaction. Calcium 45- and zinc 65-blotting experiments show that Nkd is a zinc-binding metalloprotein. The results further clarify how Nkd may antagonize Wnt signaling via interaction with Dsh, and identify a novel zinc-binding domain in Drosophila Nkd that collaborates with the conserved EFX domain to bind Dsh.  相似文献   
988.
The glutamine commute: take the N line and transfer to the A   总被引:1,自引:0,他引:1  
The transfer of glutamine between cells contributes to signaling as well as to metabolism. The recent identification and characterization of the system N and A family of transporters has begun to suggest mechanisms for the directional transfer of glutamine, and should provide ways to test its physiological significance in diverse processes from nitrogen to neurotransmitter release.  相似文献   
989.
The farnesoid X receptor (FXR) functions as a bile acid (BA) sensor coordinating cholesterol metabolism, lipid homeostasis, and absorption of dietary fats and vitamins. However, BAs are poor reagents for characterizing FXR functions due to multiple receptor independent properties. Accordingly, using combinatorial chemistry we evolved a small molecule agonist termed fexaramine with 100-fold increased affinity relative to natural compounds. Gene-profiling experiments conducted in hepatocytes with FXR-specific fexaramine versus the primary BA chenodeoxycholic acid (CDCA) produced remarkably distinct genomic targets. Highly diffracting cocrystals (1.78 A) of fexaramine bound to the ligand binding domain of FXR revealed the agonist sequestered in a 726 A(3) hydrophobic cavity and suggest a mechanistic basis for the initial step in the BA signaling pathway. The discovery of fexaramine will allow us to unravel the FXR genetic network from the BA network and selectively manipulate components of the cholesterol pathway that may be useful in treating cholesterol-related human diseases.  相似文献   
990.
TreeSAAP: selection on amino acid properties using phylogenetic trees   总被引:6,自引:0,他引:6  
The software program TreeSAAP measures the selective influences on 31 structural and biochemical amino acid properties during cladogenesis, and performs goodness-of-fit and categorical statistical tests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号