首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   95篇
  2021年   9篇
  2019年   9篇
  2018年   29篇
  2017年   12篇
  2016年   20篇
  2015年   28篇
  2014年   33篇
  2013年   41篇
  2012年   51篇
  2011年   40篇
  2010年   29篇
  2009年   24篇
  2008年   46篇
  2007年   44篇
  2006年   50篇
  2005年   52篇
  2004年   51篇
  2003年   54篇
  2002年   45篇
  2001年   44篇
  2000年   57篇
  1999年   41篇
  1998年   16篇
  1997年   21篇
  1996年   17篇
  1995年   21篇
  1994年   11篇
  1993年   10篇
  1992年   37篇
  1991年   33篇
  1990年   28篇
  1989年   26篇
  1988年   24篇
  1987年   24篇
  1986年   18篇
  1985年   11篇
  1984年   10篇
  1983年   27篇
  1982年   12篇
  1981年   11篇
  1979年   9篇
  1978年   12篇
  1977年   12篇
  1976年   11篇
  1975年   10篇
  1973年   14篇
  1971年   8篇
  1970年   9篇
  1969年   17篇
  1968年   11篇
排序方式: 共有1323条查询结果,搜索用时 140 毫秒
61.
Interspecific pollen transfer (IPT) often leads to reproductive interference. Although character displacement of reproductive traits in plants is often considered a consequence of reproductive interference, few studies have tested whether intraspecific variation in floral morphology changes the intensity of reproductive interference among pollinator-sharing plants. We investigated whether intraspecific variation in pistil length changes the proportion of IPT (interspecific pollen transfer) in sympatric populations of Clerodendrum trichotomum and C. izuinsulare on the two islands. On Toshima Island, C. izuinsulare flowers with shorter pistils were significantly less likely to receive C. trichotomum pollen, and there was a slight tendency for longer pistiles of C. trichotomum flowers to receive less C. izuinsulare pollen, suggesting that IPT has caused character displacement in pistil length in these congeneric plants. In contrast, we did not detect any relationship between pistil length and the proportion of IPT for the two species on Niijima Island. The discrepancy between the islands may reflect differences in pollinator assemblages.  相似文献   
62.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50 = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.  相似文献   
63.

Background

Although adjuvant gemcitabine (GEM) chemotherapy for pancreatic cancer is standard, the quality of life (QOL) in those patients is still impaired by the standard regimen of GEM. Therefore, we studied whether mild dose-intensity adjuvant chemotherapy with bi-weekly GEM administration could provide a survival benefit with acceptable QOL to the patients with pancreatic cancer.

Methods

After a phase I trial, an adjuvant bi-weekly 1,000 mg/m2 of GEM chemotherapy was performed in 58 patients with pancreatic cancer for at least 12 courses (Group A). In contrast, 36 patients who declined the adjuvant bi-weekly GEM chemotherapy underwent traditional adjuvant 5FU-based chemotherapy (Group B). Careful periodical follow-ups for side effects of GEM and disease recurrence, and assessment of patients’ QOL using the EORTC QOL questionnaire (QLQ-C30) and pancreatic cancer-specific supplemental module (QLQ-PAN26) were performed. Retrospectively, the degree of side effects, patients’ QOL, compliance rate, disease-free survival (DFS), and overall survival (OS) in Group A were compared with those in Group B.

Results

No severe side effects (higher than Grade 2 according to the common toxicity criteria of ECOG) were observed, except for patients in Group B, who were switched to the standard GEM chemotherapy. Patients’ QOL was better in Group A than B (fatigue: 48.9 ± 32.1 versus 68.1 ± 36.3, nausea and vomiting: 26.8 ± 20.4 versus 53.7 ± 32.6, diarrhea: 21.0 ± 22.6 versus 53.9 ± 38.5, difficulty gaining weight: 49.5 ± 34.4 versus 67.7 ± 40.5, P < 0.05). Compliance rates in Groups A and B were 93% and 47%. There was a significant difference in the median DFS between both groups (Group A : B =12.5 : 6.6 months, P < 0.001). The median OS of Group A was prolonged markedly compared with Group B (20.2 versus 11.9 months, P < 0.005). For OS between both groups, univariate analysis revealed no statistical difference in 69-year-old or under females, and T1–2 factors, moreover, multivariate analysis indicated three factors, such as bi-weekly adjuvant GEM chemotherapy, T2 or less, and R0.

Conclusions

Adjuvant chemotherapy with bi-weekly GEM offered not only the advantage of survival benefits but the excellent compliance with acceptable QOL for postoperative pancreatic cancer patients.  相似文献   
64.
65.
66.
67.
68.
Substrate and inhibitor specificities, and transglucosylation action of crystalline α-glucosidase from the mycelia of Mucor javanicus have been investigated. The enzyme hydrolyzed maltose, methyl-α-maltoside, and soluble starch liberating glucose, but little or not phenyl-α-glucoside, methyl-α-glucoside, sucrose, isomaltose, panose and dextran. The enzyme hydrolyzed phenyl-α-maltoside to glucose and phenyl-α-glucoside. The enzyme acted also as a glucosyltransferase when it was incubated with glucosyl donor such as maltose. Maltotriose was the principal transglucosylation product formed from maltose. The enzyme also catalyzed transglucosylation from maltose to riboflavin, pyridoxine, esculin and rutin. Tris and turanose inhibited the enzyme activity, but PCMB and EDTA did not. It is suggested that the enzyme activity is closely related to the histidine residue in the active center, from the inhibition experiments using diazonium-1-H-tetrazole and rose bengal.  相似文献   
69.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   
70.
Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号