首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1606篇
  免费   73篇
  国内免费   2篇
  2023年   4篇
  2022年   7篇
  2021年   16篇
  2020年   10篇
  2019年   19篇
  2018年   16篇
  2017年   34篇
  2016年   27篇
  2015年   52篇
  2014年   68篇
  2013年   117篇
  2012年   90篇
  2011年   91篇
  2010年   72篇
  2009年   79篇
  2008年   116篇
  2007年   98篇
  2006年   104篇
  2005年   99篇
  2004年   111篇
  2003年   97篇
  2002年   96篇
  2001年   8篇
  2000年   9篇
  1999年   12篇
  1998年   19篇
  1997年   17篇
  1996年   15篇
  1995年   8篇
  1994年   13篇
  1993年   24篇
  1992年   12篇
  1991年   8篇
  1990年   11篇
  1989年   15篇
  1988年   4篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1978年   4篇
  1977年   2篇
  1974年   2篇
  1971年   3篇
  1970年   3篇
  1965年   2篇
排序方式: 共有1681条查询结果,搜索用时 15 毫秒
41.
The ATPase 6 accessory protein 2 (ATP6AP2)/(pro)renin receptor (PRR) is essential for the biogenesis of active vacuolar H+-ATPase (V-ATPase). Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD) and transmembrane domain (TM) of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M) and causes X-linked mental retardation Hedera type (MRXSH) and X-linked parkinsonism with spasticity (XPDS) in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.  相似文献   
42.
43.
To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors.  相似文献   
44.
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.  相似文献   
45.
A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His261, which coordinates one of the Fe atoms with Cys295, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys295, we constructed CODH-II variants. Ala substitution for the Cys295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys295 indirectly and His261 together affect Ni-coordination in the C-cluster.  相似文献   
46.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   
47.
Assembly of the bacterial flagellar filament is strictly sequential; the junction proteins, FlgK and FlgL, are assembled at the distal end of the hook prior to the FliD cap, which supports assembly of as many as 30 000 FliC molecules into the filament. Export of these proteins requires assistance of flagellar chaperones: FlgN for FlgK and FlgL, FliT for FliD and FliS for FliC. The C‐terminal cytoplasmic domain of FlhA (FlhAC), a membrane component of the export apparatus, provides a binding‐site for these chaperone–substrate complexes but it remains unknown how it co‐ordinates flagellar protein export. Here, we report that the highly conserved hydrophobic dimple of FlhAC is involved in the export of FlgK, FlgL, FliD and FliC but not in proteins responsible for the structure and assembly of the hook, and that the binding affinity of FlhAC for the FlgN/FlgK complex is slightly higher than that for the FliT/FliD complex and about 14‐fold higher than that for the FliS/FliC complex, leading to the proposal that the different binding affinities of FlhAC for these chaperone/substrate complexes may confer an advantage for the efficient formation of the junction and cap structures at the tip of the hook prior to filament formation.  相似文献   
48.
Dextranase (EC 3.2.1.11) produced by Chaetomium gracile was purified by sequential chromatographies on CM- and DEAE-cellulose columns, and two active fractions, CD-I and CD-II, were isolated in electrophoretically pure states. The former fraction was obtained in a crystalline state. The estimated molecular weights were 77,000 for CD-I and 71,000 for CD-II, and their isoelectric points were 6.2 and 5.7, respectively. Both active fractions contained a sugar moiety (4.5%). Their amino acid compositions were determined. They were very similar to each other in enzymatic properties: The optimum pH was at around 5.5, and they were stable between pH 5.5 and 11.0, and at temperatures lower than 55°C. They were typical endodextranases, but their maximal degrees of dextran hydrolysis reached 55% as glucose.  相似文献   
49.
A microorganism was isolated from the air of a patient-room and classified in the genus Oospora. This microorganism was cultured on a malt extract medium, and the mycellium was separated from the culture filtrate. A new compound (O-1), m.p. 129°C, C11H10O3, and eburicoic acid, m.p. 290°C, C31H50O3 were obtained from the dried mycellium. Another new compound (O-2), m.p. 176°C, C11H8O5 was obtained from the culture filtrate.  相似文献   
50.
The milk fat globule membrane (MFGM) enclosing fat droplets in bovine milk was isolated, and its effects on hydrolysis of milk fat by lipases were investigated by using a gum arabic-stabilized milk fat emulsion as substrate. The addition of isolated MFGM to the reaction mixture markedly inhibited hydrolysis by pancreatic and microbial (Rhizopus delemer) lipases. The inhibition was completely lost on tryptic digestion of MFGM, suggesting that the protein moiety of MFGM played a role in the inhibition. Soluble glycoprotein (SGP) which was isolated from delipidated MFGM produced marked inhibitory activity. The inhibition by SGP was dependent on substrate concentration, suggesting that the inhibition was at least partly due to coverage and blockage of the substrate surface by SGP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号