首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1987年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有44条查询结果,搜索用时 359 毫秒
41.
A challenging topic in cancer research is to create drug delivery system that can bring in a specific and noncytotoxic manner a therapeutic compound. Usually, tumor targeting requires very specific compounds. Currently, peptide analogues like somatostatin, neurotensin, or bombesin are used to target G-coupled receptors, which are overexpressed on tumor cells. However, many of those analogues are rapidly degraded in the plasma and are cytotoxic [1–2]. Due to the limited efficiency and high toxicity of conventional chemotherapy different strategies have been developed for non-cytotoxic cancer treatment and cancer localization [3–5]. The recent development in bio-nanotechnology offers new avenues for cancer therapy. A lot of studies have been devoted to nanoparticulate delivery systems (10–100nm) like lipid or polymer particles [6–8]. Due to the nanometer sized of such cargos, the transportation of therapeutic compounds in the blood stream is increased in terms of time circulation. But their surface functionalization to improve drug-targeting properties is usually complicated and rather uneffective. We have recently designed a novel type of functional nanoparticles with regular icosahedral symmetry, mimicking small, rigid viral capsids (Fig. 1 (A)) and a diameter of about 17 nm (Fig. 1 (C)) which self-assemble from single polypeptide chains (Fig. 1 (B)).  相似文献   
42.
Lanthanum biosorption by a Pseudomonas sp. was characterized in terms of equilibrium metal loading, model fitting, kinetics, effect of solution pH, lanthanum–bacteria interaction mechanism and recovery of sorbed metal. Lanthanum sorption by the bacterium was rapid and optimum at pH 5.0 with equilibrium metal loading as high as 950 mg g−1 biomass dry wt. Scatchard model and potentiometric titration suggested the presence of at least two types of metal-binding sites, corresponding to a strong and a weak binding affinity. The chemical nature of metal–microbe interaction has been elucidated employing FTIR spectroscopy, energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD). FTIR spectroscopy and XRD analysis revealed strong involvement of cellular carboxyl and phosphate groups in lanthanum binding by the bacterial biomass. EDX and the elemental analysis of the sorption solution ascertained the binding of lanthanum with the bacterial biomass via displacement of cellular potassium and calcium. Transmission electron microscopy exhibited La accumulation throughout the bacterial cell with some granular deposits in cell periphery and in cytoplasm. XRD confirmed the presence of LaPO4 crystals onto the bacterial biomass after La accumulation for a long period. A combined ion-exchange–complexation–microprecipitation mechanism could be involved in lanthanum accumulation by the biomass. Almost 98% of biomass-bound La could be recovered using CaCO3 as the desorbing agent.  相似文献   
43.
Human C-reactive protein (CRP) is a clinically important classical acute phase protein. Although CRP has been reported to bind with many nucleated cells, the direct binding of CRP to erythrocytes in diseases remains largely unexplored. The main focus of the present study was to investigate the binding of disease-specific CRP to erythrocytes of same patients. Distinct molecular variant of disease-specific CRP was affinity purified from sera of malaria patients (CRPMal). This CRP showed strong binding with malaria erythrocytes (RBCMal) as confirmed by flow cytometric analysis (FACS), enzyme-linked immunosorbent assays (ELISA), and radio binding assays. Calcium and phosphoryl choline (PC) were found to be essential for this interaction. A 2.3-fold increased binding of induced CRP to RBCMal as compared to normal erythrocytes (RBCN) confirmed disease-specificity. Preincubation of RBCMal with unconjugated CRP showed 3–5 fold inhibition. The association constant of CRP and RBCMal was 4.7 × 106 cpm/μg with the corresponding number of receptors/cell being 4.3 × 105. The effector function of CRPMal has been demonstrated by its potency to activate the complement pathway. An optimal dose of 10 μg/ml of CRP induced three-fold higher hemolysis of patient erythrocytes as compared to RBCN. These studies provide direct evidence for an important phagocytic functional interaction of this acute-phase protein by triggering the CRP-complement pathway after the binding of CRPMal with RBCMal. Hemolysis as triggered by this pathway may be one of the causative factors of anemia, a common clinical manifestation of this disease.  相似文献   
44.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号