首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   56篇
  2023年   1篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   16篇
  2017年   11篇
  2016年   22篇
  2015年   29篇
  2014年   48篇
  2013年   54篇
  2012年   48篇
  2011年   43篇
  2010年   33篇
  2009年   45篇
  2008年   55篇
  2007年   55篇
  2006年   60篇
  2005年   66篇
  2004年   66篇
  2003年   66篇
  2002年   42篇
  2001年   12篇
  2000年   12篇
  1999年   16篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   5篇
  1977年   1篇
  1966年   1篇
排序方式: 共有911条查询结果,搜索用时 140 毫秒
101.
Engagement of the FcepsilonRI expressed on mast cells induces the production of phosphatidylinositol 3, 4, 5-trisphosphate by PI3K, which is essential for the functions of the cells. PTEN (phosphatase and tensin homologue deleted on chromosome ten) directly opposes PI3K by dephosphorylating phosphatidylinositol 3, 4, 5-trisphosphate at the 3' position. In this work we used a lentivirus-mediated short hairpin RNA gene knockdown method to study the role of PTEN in CD34(+) peripheral blood-derived human mast cells. Loss of PTEN caused constitutive phosphorylation of Akt, p38 MAPK, and JNK, as well as cytokine production and enhancement in cell survival, but not degranulation. FcepsilonRI engagement of PTEN-deficient cells augmented signaling downstream of Src kinases and increased calcium flux, degranulation, and further enhanced cytokine production. PTEN-deficient cells, but not control cells, were resistant to inhibition of cytokine production by wortmannin, a PI3K inhibitor. The findings demonstrate that PTEN functions as a key regulator of mast cell homeostasis and FcepsilonRI-responsiveness.  相似文献   
102.
Three classes of signaling molecule, VG1, WNT and BMP, play crucial roles in axis formation in the chick embryo. Although VG1 and WNT signals have a pivotal function in inducing the primitive streak and Hensen's node in the embryo midline, their action is complemented by that of BMP antagonists that protect the prospective axial tissue from the inhibitory influence of BMPs secreted from the periphery. We have previously reported that a secreted factor, chick Tsukushi (TSK), is expressed in the primitive streak and Hensen's node, where it works as a BMP antagonist. Here, we describe a new crucial function for TSK in promoting formation of the primitive streak and Hensen's node by positively regulating VG1 activity. We provide evidence that TSK directly binds VG1 in vitro, and that TSK and VG1 functionally interact in axis formation, as shown by biological assays performed in chick and Xenopus embryos. Furthermore, we show that alternative splicing of TSK RNA leads to the formation of two isoforms (TSKA, originally designated as TSK, and TSKB) that differ in their C-terminal region. Biochemical and biological assays indicate that TSKB is a much weaker BMP antagonist than TSKA, although both isoforms efficiently interact with VG1. Remarkably, although both TSKA and TSKB are expressed throughout the early extending primitive streak, their expression patterns diverge during gastrulation. TSKA expression concentrates in Hensen's node, a well-known source of anti-BMP signals, whereas TSKB accumulates in the middle primitive streak (MPS), a region known to work as a node-inducing center where VG1 expression is also specifically localized. Loss-of-function experiments demonstrate that TSKB, but not TSKA, function is required in the MPS for induction of Hensen's node. Taken together, these results indicate that TSK isoforms play a crucial role in chick axis formation by locally modulating VG1 and BMP activities during gastrulation.  相似文献   
103.
BACKGROUND: RNA interference (RNAi) has become a powerful tool in silencing target genes in various organisms. In mammals, RNAi can be induced by using short interfering RNA (siRNA). The efficacy of inducing RNAi in mammalian cells by using siRNA depends very much on the selection of the target sequences. METHODS: We developed an siRNA target sequence selection system by first constructing parallel-type siRNA expression vector libraries carrying siRNA expression fragments originating from fragmentized target genes, and then using a group selection system. For a model system, we constructed parallel-type siRNA expression vector libraries against DsRed and GFP reporter genes. RESULTS: We carried out the first screening of groups containing more than 100 random siRNA expression plasmids in total for each target gene, and successfully obtained target sequences with very strong efficacy. Furthermore, we also obtained some clones that express dsRNAs of various lengths that might induce cytotoxicity. CONCLUSIONS: This system should allow us to perform screening for powerful target sequences, by including all possible target sequences for any gene, even without knowing the whole sequence of the target gene in advance. At the same time, target sequences that should be avoided due to cytotoxicity can be identified.  相似文献   
104.
Huh YH  Chu SY  Park SY  Huh SK  Yoo SH 《Biochemistry》2006,45(4):1212-1226
Recently, secretory granule Ca(2+) storage protein chromogranin B (CGB) was shown to be present in the nucleoplasm proper in a complex structure that consists of the inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels and the phospholipids. Further, the amounts of IP(3)Rs present in the nucleus of bovine chromaffin cells were shown to be comparable to that of the endoplasmic reticulum. Therefore, we investigated here the potential contribution of nuclear CGB on the IP(3)-dependent Ca(2+) mobilization in the nucleus, using both neuroendocrine PC12 and nonneuroendocrine NIH3T3 cells. Chromogranin A (CGA) expression in the NIH3T3 cells, which do not contain intrinsic chromogranins, increased the IP(3)-induced Ca(2+) releases in the nucleus by 45%, while CGB expression in the same cells increased the IP(3)-induced Ca(2+) releases in the nucleus by 80%. Microinjection of IP(3) into the nucleus of CGB-expressing NIH3T3 cells increased the IP(3)-dependent nuclear Ca(2+) mobilization approximately 3-fold, whereas in CGA-expressing cells it remained the same as that of control cells. In contrast, inhibition of CGA expression in PC12 cells by siRNA treatment decreased the IP(3)-induced Ca(2+) releases in the nucleus by 17%, while inhibition of CGB expression decreased the IP(3)-induced Ca(2+) releases in the nucleus by 55%. Microinjection of IP(3) into the nucleus of siCGB-treated PC12 cells decreased the IP(3)-dependent nuclear Ca(2+) mobilization by approximately 75%, whereas in siCGA-treated cells it remained the same as that of control cells. Given the presence of CGB in the nucleus, these results further highlight the critical contribution of nuclear CGB in the IP(3)-induced Ca(2+) release in the nucleus.  相似文献   
105.
Calpain is secreted by intra-articular synovial cells and degrades the main components of cartilage matrix proteins, proteoglycan, and collagen, causing cartilage destruction. Matrix metalloproteinase-3 (MMP-3) has also been detected in synovial fluid and serum, and is involved in the development and progression of rheumatoid arthritis by degradation of the extracellular matrix and cartilage destruction. To investigate the relationship between calpain and MMP-3 in rheumatic inflammation, we utilized the rheumatic synovial cell line, MH7A. Tumor necrosis factor (TNF-alpha) stimulation-induced increased expression of mu-calpain, m-calpain, and MMP-3 in these cells, as well as the release of calpain and MMP-3 into the culture medium. The calpain inhibitors, ALLN (calpain inhibitor I) and calpeptin, did not affect the intracellular expression of MMP-3, but reduced the secretion of MMP-3 in a concentration-dependent manner. Down-regulation of mu- but not m-calpain by small interfering RNAs abolished TNF-alpha-induced MMP-3 release from the synovial cells. These findings suggest that calpain, particularly mu-calpain, regulates MMP-3 release by rheumatic synovial cells, in addition to exerting its own degradative action on cartilage.  相似文献   
106.
107.
Helicobacter pylori (H. pylori)-induced immune responses in the gastric mucosa are skewed toward T helper (Th) 1 phenotype, which is characterized by predominant production of tumor necrosis factor (TNF)-α and interferon (IFN)-γ by helper T cells. Toll-like receptors (TLRs) play an essential role in mucosal defense against microbes through the recognition of bacterial molecules. Among the members of the TLR family, TLR9 recognizes bacterial unmethylated CpG DNA sites, and signal transduction of TLR9 induces production of a variety of cytokines, including type-I IFN (IFN-α/β). We investigated the expression and role of TLR9 in H. pylori-induced gastritis in mice. Expression of TLR9 mRNA in the gastric tissue increased after infection with H. pylori. TLR9 was mainly expressed in the macrophages, dendritic cells, and CD3+ cells in the gastric mucosa. Neutrophil infiltration and the expression levels of TNF-α and IFN-γ mRNA were higher in TLR9 knockout (KO) mice than in wild-type mice at 2 and 4 months after H. pylori inoculation. These differences in inflammatory parameters between H. pylori-infected wild-type and TLR9 KO mice disappeared 6 months after H. pylori inoculation. Expression of interleukin-4 mRNA, typical Th2 cytokine, in the gastric tissue did not differ between H. pylori-infected wild-type and TLR9 KO mice. Expression level of IFN-α/β mRNA in the TLR9 KO mice was lower than that in wild-type mice by 4 months after inoculation. Administration of IFN-α reduced H. pylori infection-induced increase in neutrophil infiltration and the expression levels of TNF-α and IFN-γ mRNA in TLR9 KO mice. Our findings suggest that TLR9 signaling plays important roles in the suppression of H. pylori-induced gastritis in the early phase via downregulation of Th1-type cytokines modulated by IFN-α.  相似文献   
108.
109.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates innate and adaptive immunity. Recent studies have shown that the activation of TLR-dependent signaling pathways plays important roles in the pathogenesis of ischemia-reperfusion (I/R) injuries in many organs. All TLRs, except TLR3, use a common adaptor protein, MyD88, to transduce activation signals. We investigated the role of MyD88 in I/R injury of the small intestine. MyD88 and cyclooxygenase-2 (COX-2) knockout and wild-type mice were subjected to intestinal I/R injury. I/R-induced small intestinal injury was characterized by infiltration of inflammatory cells, disruption of the mucosal epithelium, destruction of villi, and increases in myeloperoxidase activity and mRNA levels of TNF-α and the IL-8 homolog KC. MyD88 deficiency worsened the severity of I/R injury, as assessed using the histological grading system, measuring luminal contents of hemoglobin (a marker of intestinal bleeding), and counting apoptotic epithelial cells, while it inhibited the increase in mRNA expression of TNF-α and KC. I/R significantly enhanced COX-2 expression and increased PGE(2) concentration in the small intestine of wild-type mice, which were markedly inhibited by MyD88 deficiency. COX-2 knockout mice were also highly susceptible to intestinal I/R injury. Exogenous PGE(2) reduced the severity of injury in both MyD88 and COX-2 knockout mice to the level of wild-type mice. These findings suggest that the MyD88 signaling pathway may inhibit I/R injury in the small intestine by inducing COX-2 expression.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号