首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   29篇
  2022年   1篇
  2021年   5篇
  2020年   7篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   14篇
  2015年   25篇
  2014年   24篇
  2013年   23篇
  2012年   51篇
  2011年   40篇
  2010年   22篇
  2009年   28篇
  2008年   53篇
  2007年   53篇
  2006年   46篇
  2005年   49篇
  2004年   46篇
  2003年   48篇
  2002年   60篇
  2001年   13篇
  2000年   1篇
  1999年   8篇
  1998年   5篇
  1997年   10篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1984年   3篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1975年   5篇
  1971年   1篇
  1970年   2篇
  1963年   1篇
排序方式: 共有718条查询结果,搜索用时 31 毫秒
71.
Tom1 (target of Myb1) is a protein of unknown function. Tom1 and its relative Tom1L1 have an N-terminal VHS (Vps27p/Hrs/Stam) domain followed by a GAT (GGA and Tom1) domain, both of which are also found in the GGA (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor-binding protein) family of proteins. Although the VHS and GAT domains of GGA proteins bind to transmembrane cargo proteins and the small GTPase ADP-ribosylation factor, respectively, the VHS and GAT domains of Tom1 are unable to interact with these proteins. In this study, we show that the GAT domains of Tom1 and Tom1L1 interact with ubiquitin and Tollip (Toll-interacting protein). Ubiquitin bound the GAT domains of Tom1, Tom1L1, and GGA proteins, whereas Tollip interacted specifically with Tom1 and Tom1L1. Ubiquitin and Tollip bound to an overlapping region of the Tom1-GAT domain in a mutually exclusive manner. Tom1 was predominantly cytosolic when expressed in cells. On the other hand, Tollip was localized on early endosomes and recruited Tom1 and ubiquitinated proteins. These observations suggest that Tollip and Tom1 form a complex and regulate endosomal trafficking of ubiquitinated proteins.  相似文献   
72.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
73.
Lactosylceramide (LacCer), a neutral glycosphingolipid, is abundantly expressed on human neutrophils, and specifically recognizes several pathogenic microorganisms. LacCer forms membrane microdomains coupled with the Src family kinase Lyn on the plasma membrane, and ligand binding to LacCer activates Lyn, resulting in neutrophil functions. In contrast, neutrophilic differentiated HL-60 cells do not have Lyn-associated LacCer-enriched microdomains and lack LacCer-mediated functions. In neutrophil plasma membranes, the very long fatty acid C24:0 and C24:1 chains are the main components of LacCer, whereas plasma membrane of D-HL-60 cells mainly includes C16-LacCer species. Here, we suggest that LacCer species containing very long fatty acid chains are indispensable for the association of Lyn with LacCer-enriched microdomains and LacCer-mediated functions.  相似文献   
74.
In the blood (hemolymph) of the silkworm Bombyx mori, the insect cytokine paralytic peptide (PP) is converted from an inactive precursor to an active form in response to the cell wall components of microorganisms and contributes to silkworm resistance to infection. To investigate the molecular mechanism underlying the up-regulation of host resistance induced by PP, we performed an oligonucleotide microarray analysis on RNA of blood cells (hemocytes) and fat body tissues of silkworm larvae injected with active PP. Expression levels of a large number of immune-related genes increased rapidly within 3 h after injecting active PP, including phagocytosis-related genes such as tetraspanin E, actin A1, and ced-6 in hemocytes, and antimicrobial peptide genes cecropin A and moricin in the fat body. Active PP promoted in vitro and in vivo phagocytosis of Staphyloccocus aureus by the hemocytes. Moreover, active PP induced in vivo phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) in the fat body. Pretreatment of silkworm larvae with ML3403, a pharmacologic p38 MAPK inhibitor, suppressed the PP-dependent induction of cecropin A and moricin genes in the fat body. Injection of active PP delayed the killing of silkworm larvae by S. aureus, whereas its effect was abolished by preinjection of the p38 MAPK inhibitor, suggesting that p38 MAPK activation is required for PP-dependent defensive responses. These findings suggest that PP acts on multiple tissues in silkworm larvae and acutely activates cellular and humoral immune responses, leading to host protection against infection.  相似文献   
75.
CCR4-NOT complex 7 (Cnot7) was identified as a regulator of gene expression in yeast and evolutionally conserved in mammals. Cnot7 deficient male mice exhibit abnormality in spermatogenesis. As these mice contained construct to express LacZ, we followed the expression patterning in these animals. LacZ was expressed in osteoblasts located in the primary spongiosa in adult mice. Cellular analysis indicated that LacZ is expressed in osteoblasts but not in osteoclasts. In the mineralized nodules formed in the culture of bone marrow cells obtained from Cnot7 +/- mice, LacZ expression was mainly observed in the cells forming mineralized nodules but not in un-mineralized area scattered around the periphery of the nodules. LacZ blue positive cells were gradually depositing minerals along its time course of the in vitro mineralization assay. Cnot7 expression was enhanced by the treatment with BMP. These data suggest that Cnot7 is expressed in osteoblasts and is associated with mineralization.  相似文献   
76.
Calcium plays a fundamental role as second messenger in intracellular signaling and bone serves as the body's calcium reserve to tightly maintain blood calcium levels. Calcium in ingested meal is the main supply and inadequate calcium intake causes osteoporosis and bone fracture. Here, we describe a novel mechanism of how ingested calcium is deposited on bone. Meal ingestion elicits secretion of the gut hormone gastric inhibitory polypeptide (GIP) from endocrine K cells in the duodenum. Bone histomorphometrical analyses revealed that bone formation parameters in the mice lacking GIP receptor (GIPR(-/-)) were significantly lower than those of wild-type (GIPR(+/+)) mice, and that the number of osteoclasts, especially multinuclear osteoclasts, was significantly increased in GIPR(-/-) mice, indicating that GIPR(-/-) mice have high-turnover osteoporosis. In vitro examination showed the percentage of osteoblastic cells undergoing apoptosis to be significantly decreased in the presence of GIP. Because GIPR(-/-) mice exhibited an increased plasma calcium concentration after meal ingestion, GIP directly links calcium contained in meal to calcium deposition on bone.  相似文献   
77.
Alteration of illumination with optimum carbon dioxide fixation-based curve in this research successfully enhanced the CO2-fixation (qco2) capability ofChlorella vulgaris Buitenzorg cultivated in a bubble column photo bioreactor. The level of CO2 fixation was up to 1.91 times that observed from cultivation with intensification of illumination on an optimum growth-based curve. During 144 h of cultivation, alteration of light intensity on an optimum CO2-fixation-based curve produced a qCO2 of 6.68 h?1. Increases in light intensity based on a curve of optimum CO2-fixation produced a final cell concentration of about 5.78 g/L. Both cultivation methods were carried out under ambient pressure at a temperature of 29°C with a superficial gas velocity of 2.4 m/h (UG). Cells were grown on Beneck medium in a 1.0 L Bubble Column Photo bioreactor illuminated by aPhillips Halogen Lamp (20 W/12 V/50 Hz). The inlet gas had a carbon dioxide content of 10%.  相似文献   
78.
An improved linkage map of Lentinula edodes (shiitake) was constructed with an HEGS (high-efficiency genome scanning) system. Two hundred twenty-one HEGS-derived amplified fragment length polymorphism (AFLP-H) markers and 21 gene markers were developed and combined with 203 previously developed sequencer-derived AFLP markers (AFLP-S markers) and 3 mating factor loci (A, Bα, and Bβ) to construct a comprehensive linkage analysis. As a result, a novel linkage map with 166 markers including 2 mating factors (A and B), 10 HEGS-derived gene markers, 72 AFLP-H markers, and 82 AFLP-S markers was obtained. Of the total 448 markers, 273 could not be located on a linear map and thus were assigned to linkage groups as accessory markers. The map covers a total length of 1398.4 centimorgans (cM) with an average marker interval distance of 8.4 cM. The map consists of 11 linkage groups (LGs) in agreement with our previous map, and 7 LGs among them were found to contain branched linkages, which may be the result of reciprocal translocations representing dynamic reorganization of the shiitake genome. The previously reported linkage map was improved in terms of number of markers, marker density, linear order of markers, and total map length. Contribution no. 384 of the Tottori Mycological Institute  相似文献   
79.
In this study, we examined cleavage and survival of fertilized Xenopus embryos exposed to 8 T static magnetic fields (SMFs). We investigated fertilized Xenopus embryos exposed to magnetic field either in static chamber or in a rotating culture system. Our results showed that the exposure to the strong magnetic field of 8 T changed the third cleavage furrow from the usual horizontal one to a perpendicular one; however, when the direction of gravity was randomized by exposing embryos to magnetic field in a rotating culture system, the third cleavage furrow were formed horizontally, a finding which suggests that the observed distortion of the third cleavage furrow in magnetism-exposed embryos was accomplished by altering gravity effects which were elicited by diamagnetic force due to high gradient magnetic field. Our results also showed that the exposure to the strong magnetic field did not damage survival. These results demonstrate that SMF and altering gravity cause distortion of the third cleavage furrow and show that effects of exposing cleavage embryos to magnetic field were transient and did not affect the post-cleavage development. We also showed that strong magnetic field is not hazardous to the cleavage and blastula-gastrula transition of developing embryonic cells.  相似文献   
80.
Pepstatin A is well known to be an inhibitor of aspartic proteinases such as pepsin, cathepsins D and E. Except for its role as a proteinase inhibitor, however, the pharmacological action of pepstatin A upon cells remain unclear. In this study, we found that pepstatin A suppressed receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. Pepstatin A suppressed the formation of multinuclear osteoclasts dose-dependently. This inhibition of the formation only affected osteoclast cells, i.e., not osteoblast-like cells. Furthermore, pepstatin A also suppressed differentiation from pre-osteoclast cells to mononuclear osteoclast cells dose-dependently. This inhibition seems to be independent of the activities of proteinases such as cathepsin D, because the formation of osteoclasts was not suppressed with the concentration that inhibited the activity of cathepsin D. Cell signaling analysis indicated that the phosphorylation of ERK was inhibited in pepstatin A-treated cells, while the phosphorylation of IkappaB and Akt showed almost no change. Furthermore, pepstatin A decreased the expression of nuclear factor of activated T cells c1 (NFATc1). These results suggest that pepstatin A suppresses the differentiation of osteoclasts through the blockade of ERK signaling and the inhibition of NFATc1 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号