首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   33篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   11篇
  2017年   11篇
  2016年   18篇
  2015年   25篇
  2014年   27篇
  2013年   44篇
  2012年   43篇
  2011年   47篇
  2010年   25篇
  2009年   32篇
  2008年   55篇
  2007年   54篇
  2006年   44篇
  2005年   47篇
  2004年   44篇
  2003年   51篇
  2002年   44篇
  2001年   13篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有779条查询结果,搜索用时 437 毫秒
101.
102.
Cell wall metabolism and cell wall modification are very important processes that bacteria use to adjust to various environmental conditions. One of the main modifications is deacetylation of peptidoglycan. The polysaccharide deacetylase homologue, Bacillus subtilis YjeA (renamed PdaC), was characterized and found to be a unique deacetylase. The pdaC deletion mutant was sensitive to lysozyme treatment, indicating that PdaC acts as a deacetylase. The purified recombinant and truncated PdaC from Escherichia coli deacetylated B. subtilis peptidoglycan and its polymer, (-GlcNAc-MurNAc[-L-Ala-D-Glu]-)(n). Surprisingly, RP-HPLC and ESI-MS/MS analyses showed that the enzyme deacetylates N-acetylmuramic acid (MurNAc) not GlcNAc from the polymer. Contrary to Streptococcus pneumoniae PgdA, which shows high amino acid sequence similarity with PdaC and is a zinc-dependent GlcNAc deacetylase toward peptidoglycan, there was less dependence on zinc ion for deacetylation of peptidoglycan by PdaC than other metal ions (Mn(2+), Mg(2+), Ca(2+)). The kinetic values of the activity toward B. subtilis peptidoglycan were K(m) = 4.8 mM and k(cat) = 0.32 s(-1). PdaC also deacetylated N-acetylglucosamine (GlcNAc) oligomers with a K(m) = 12.3 mM and k(cat) = 0.24 s(-1) toward GlcNAc(4). Therefore, PdaC has GlcNAc deacetylase activity toward GlcNAc oligomers and MurNAc deacetylase activity toward B. subtilis peptidoglycan.  相似文献   
103.
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.  相似文献   
104.
A structure consisting of substituted hydantoin linked to a 5-(halophenyl)furan-2-yl group via an amide bond was identified as a promising scaffold for development of low-molecular-weight therapeutic agents to treat vascular dysfunction, including ischemia/reperfusion injury. Among the compounds synthesized, 5-(3,5-dichlorophenyl)-N-{2,4-dioxo-3-[(pyridin-3-yl)methyl]imidazolidin-1-yl}-2-furamide (17) possessed the most potent inhibitory activity against Ca2+-induced mitochondrial swelling. The structural development, synthesis and structure–activity relationship of these compounds are described.  相似文献   
105.
In the present study, we examined the mechanisms underlying the cytotoxicity of pitavastatin, a new statin, and we compared the in vitro potencies of muscle cytotoxicity using a prototypic embryonal rhabdomyosarcoma cell line (RD cells), a typical side effect of statins and compared the cholesterol-lowering effects of statins using Hep G2 hepatoma cells. Pitavastatin reduced the number of viable cells and caused caspase-9 and -3/7 activation in a time- and concentration-dependent manner. The comparison of cytotoxities of statins showed that statins significantly reduced cell viability and markedly enhanced activity of caspase-3/7 in concentration-dependent manner. On the other hand, the effects of hydrophilic statins, pravastatin, rosuvastatin were very weak. The rank order of cytotoxicity was cerivastatin > simvastatin acid> fluvastatin > atorvastatin > lovastatin acid > pitavastatin > rosuvastatin, pravastatin. Statin-induced cytotoxicity is associated with these partition coefficients. On the other hand, the cholesterol-lowering effect of statins did not correlate with these partition coefficients and cytotoxicity. Thus, it is necessary to consider the association between risk of myopathy and cholesterol-lowering effect of a statin for precise use of statins.  相似文献   
106.
Sekiya N  Yano K 《The New phytologist》2008,179(3):799-807
* Stomatal formation is affected by a plant's external environment, with long-distance signaling from mature to young leaves seemingly involved. However, it is still unclear what is responsible for this signal. To address this question, the relationship between carbon isotope discrimination (Delta) and stomatal density was examined in cowpea (Vigna sinensis). * Plants were grown under various environments that combined different amounts of soil phosphorus (P), soil water, and atmospheric CO(2). At harvest, stomatal density was measured in the youngest fully expanded leaf. The (13)C : (12)C ratio was measured in a young leaf to determine the Delta in mature leaves. * Results indicated that stomatal density is affected by P as well as by amounts of water and CO(2). However, stomatal responses to water and CO(2) were complex because of strong interactions with P. This suggests that the responses are relative, depending on some internal factor being affected by each external variable. Despite such complicated responses, a linear correlation was found between stomatal density and Delta across all environments examined. * It is proposed that the Delta value is a good surrogate for the long-term mean of the intercellular (C(i)) to the atmospheric (C(a)) CO(2) concentration ratio (C(i) : C(a)) and may be useful in understanding stomatal formation beyond complicated interactions.  相似文献   
107.
108.
The diaphanous-related formins are actin nucleating and elongating factors. They are kept in an inactive state by an intramolecular interaction between the diaphanous inhibitory domain (DID) and the diaphanous-autoregulatory domain (DAD). It is considered that the dissociation of this autoinhibitory interaction upon binding of GTP-bound Rho to the GTPase binding domain next to DID induces exposure of the FH1-FH2 domains, which assemble actin filaments. Here, we isolated two diaphanous-related formins, mDia1 and Daam1, in platelet extracts by GTP-RhoA affinity column chromatography. We characterized them by a novel assay, where beads coated with the FH1-FH2-DAD domains of either mDia1 or Daam1 were incubated with platelet cytosol, and the assembled actin filaments were observed after staining with rhodamine-phalloidin. Both formins generated fluorescent filamentous structures on the beads. Quantification of the fluorescence intensity of the beads revealed that the initial velocity in the presence of mDia1 was more than 10 times faster than in the presence of Daam1. The actin assembly activities of both FH1-FH2-DADs were inhibited by adding cognate DID domains. GTP-RhoA, -RhoB, and -RhoC, but not GTP-Rac1 or -Cdc42, bound to both mDia1 and Daam1 and efficiently neutralized the inhibition by the DID domains. The association between RhoA and Daam1 was induced by thrombin stimulation in platelets, and RhoA-bound endogenous formins induced actin assembly, which was inhibited by the DID domains of Daam1 and mDia1. Thus, mDia1 and Daam1 are platelet actin assembly factors having distinct efficiencies, and they are directly regulated by Rho GTPases.  相似文献   
109.
Ubiquitylation appears to be involved in the membrane trafficking system including endocytosis, exocytosis, and ER-to-Golgi transport. We found that PIRH2, which was identified as an interacting protein for androgen receptor or p53, interacts with and ubiquitylates the ε-subunit of coatmer complex, ε-COP. PIRH2 promotes the ubiquitylation of ε-COP in vitro and in vivo and consequently promotes the degradation of ε-COP. The interaction between PIRH2 and ε-COP is affected by the presence of androgen, and PIRH2 in the presence of androgen promotes ubiquitylation of ε-COP in vivo. Furthermore, overexpression of the wild type of PIRH2 in prostate cancer cells causes downregulation of the secretion of prostate-specific antigen (PSA), a secretory protein in prostate epithelial cells and one of diagnostic markers for prostate cancer. Our results indicate that PIRH2 functions as a regulator for COP I complex.  相似文献   
110.
Brain and liver extracts of rats at different stages after birth were examined for cytochrome c/dATP-dependent caspase (DEVDase)-activation (mitochondria pathway) in vitro. The caspase-activating activity in the brain extracts rapidly decreased after birth, reaching approximately 50 and 5%, at 1 and 2 weeks, respectively, of that in a 3-days- newborn sample, and essentially no caspase-activation was detected in the adult rat brain extracts. Such a dramatic change was not detected in the liver samples, suggesting that the observed abrogation of the cytochrome c-dependent mitochondria pathway after birth is a brain-specific event. In order to determine the factor(s) lacking in adult brain, we separately measured Apaf-1, procaspase 9, and pro-DEVDase activities using a supplementation assay. In adult brain, Apaf-1 activity was scarcely detected, while the tissue retained low but significant amounts of procaspase 9 (16% of that in the fetal tissue) and a pro-DEVDase (3.4%). In contrast, adult liver extracts retained relatively high levels of all of these factors. Immunoblot analyses clearly indicated that the expression of Apaf-1 and procaspase 3 is markedly suppressed within 4 weeks after birth in brain tissue while they are even expressed in adult liver. Considering these results together, we propose that, in the brain, the cytochrome c-dependent mitochondria pathway, which is essential for the programmed cell death during normal morphogenesis, is abrogated within 2-4 weeks after birth, whereas the pathway is still active in other adult tissues such as liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号