首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   16篇
  国内免费   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   11篇
  2015年   12篇
  2014年   12篇
  2013年   8篇
  2012年   20篇
  2011年   16篇
  2010年   7篇
  2009年   9篇
  2008年   17篇
  2007年   12篇
  2006年   12篇
  2005年   14篇
  2004年   21篇
  2003年   13篇
  2002年   17篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   6篇
  1997年   10篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有305条查询结果,搜索用时 46 毫秒
111.
The relationship between germination and PFR level in sporesof the fern Lygodium japonicum was investigated. Percent PFRestimated from direct spectrophotometric measurement of sporesincreased with the logarithm of total fluence of 660 nm-light.The transformation from PR to PFR was saturated by giving ca.200 Jm–2 of 660 nm-light and half-saturated by ca. 55J–2 of 660 nm-light. Clear positive correlation was observedbetween % PFR levels and germination rates in spores irradiatedwith 660 nm and/or 730 nm-light, or with 686 or 700 nm-light.The PFR percentage in spores was raised to 16–34% by blue(415 nm) light irradiation. This PFR level was enough to causesome germination when produced by monochromatic light of redto far-red region, but blue light did not cause any germination. After 660 nm-light irradiation, the PFR level decreased graduallyin darkness (25±1°C) and PFR completely disappearedin 8 h, but 730 nm-light given even 16 h after 660 nm-lightirradiation inhibited germination. 4Present address: Tropical Botanic Garden and Research Institute,Navaranga Road, Trivandrum 695 011, India. (Received March 15, 1983; Accepted June 4, 1983)  相似文献   
112.
In Wolffian lens regeneration, lentectomized newt eye can produce a new lens from the dorsal marginal iris, but the ventral iris has never shown such capabilities. To investigate the difference of lens regenerating potency between dorsal and ventral iris epithelium at the cellular level, a transplantation system using cell reaggregates was developed. Two methods were devised for preparing the reaggregates from pigmented iris epithelial cells. One was rotating cells in an agar-coated multiplate on a gyratory shaker and the other was incubating cells in a microcentrifuge tube after slight centrifugation. Reaggregates made of dorsal iris cells that had been completely dissociated into single cells were phenotypically transformed into a lens when placed in the pupillary region of the lentectomized host eye. None of the ventral reaggregates produced a lens. Even dorsal reaggregates could not transdifferentiate into lens when they were placed away from the pupil. The produced lenses from the reaggregates were morphologically and immunohistochemically identified. To obtain evidence whether produced lenses really originated from singly dissociated cells, we labeled dissociated cells with a fluorescent dye (PKH26) before reaggregate formation and then traced it in the produced lens.  相似文献   
113.
Summary A brief irradiation with red light of pea (Pisum sativum L.) shoot segments kept at 0° resulted in very rapid binding of both Pr and Pfr to mitochondrial and microsomal fractions. The effect was not far-red reversible. The amount of phytochrome bound to the mitochondrial fraction was proportional to the percentage of Pfr of the fraction, and the ratio of Pr and Pfr in the bound form was the same as that in 12,000 x g supernatant. After a brief exposure of the segments to red light at 0° and a subsequent dark incubation at 30° in Tris-HCL buffer containing dithiothreitol or EDTA, which bot inhibit Pfr decay, the contents of phytochrome in the mitochondrial and microsomal fractions were significantly enhanced with time. The red-light effect was reversed by far-red light. The increase of the phytochrome content in the particulate fractions continued for at least 2 h, reaching a ca. 3 times higher level in terms of (A) per mg protein.Abbreviations R red - FR far-red - Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome  相似文献   
114.
115.
Alcoholic fermentation from grains with a noncooking system was successfully carried out for the first time on an industrial scale. The results were compared with those with a conventional high-temperature cooking system and a low-temperature cooking one and it was found that:

(1) The fermentation efficiency is equal or superior to that of the high-temperature cooking system.

(2) Mashing at a concentration high enough to obtain an average 14.2% final alcohol concentration can be very easily done on an industrial scale.

(3) The need for heavy fuel oil for the mashing process is eliminated.

(4) The noncooking system allows much energy saving in industrial production of alcohol from starchy materials.  相似文献   
116.
Peroxisomes in higher plant cells are known to differentiate into at least three different classes, namely, glyoxysomes, leaf peroxisomes, and unspecialalized peroxisomes, dependending on the cell types. In germinating fatty seedlings, glyoxysomes that first appear in the etiolated cotyledonary cells are functionally transformed into leaf peroxisomes during greening. Subsequently, the organelles are transformed back into glyoxysomes during senescence of the cotyledons. Flexibility of function is a distinct feature of plant peroxisomes. This article briefly describes recent studies of the regulatory mechanisms involved in the changes of the function of plant peroxisomes.  相似文献   
117.
Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.  相似文献   
118.
We developed the novel positron emission tomography (PET) ligand 2‐[5‐(4‐[11C]methoxyphenyl)‐2‐oxo‐1,3‐benzoxazol‐3(2H)‐yl]‐N‐methyl‐N‐phenylacetamide ([11C]MBMP) for translocator protein (18 kDa, TSPO) imaging and evaluated its efficacy in ischemic rat brains. [11C]MBMP was synthesized by reacting desmethyl precursor ( 1 ) with [11C]CH3I in radiochemical purity of ≥ 98% and specific activity of 85 ± 30 GBq/μmol (n = 18) at the end of synthesis. Biodistribution study on mice showed high accumulation of radioactivity in the TSPO‐rich organs, e.g., the lungs, heart, kidneys, and adrenal glands. The metabolite analysis in mice brain homogenate showed 80.1 ± 2.7% intact [11C]MBMP at 60 min after injection. To determine the specific binding of [11C]MBMP with TSPO in the brain, in vitro autoradiography and PET studies were performed in an ischemic rat model. In vitro autoradiography indicated significantly increased binding on the ipsilateral side compared with that on the contralateral side of ischemic rat brains. This result was supported firmly by the contrast of radioactivity between the ipsilateral and contralateral sides in PET images. Displacement experiments with unlabelled MBMP or PK11195 minimized the difference in uptake between the two sides. In summary, [11C]MBMP is a potential PET imaging agent for TSPO and, consequently, for the up‐regulation of microglia during neuroinflammation.

  相似文献   

119.
120.
This study was conducted to compare the effects of atorvastatin plus aspirin combined therapy on inflammatory responses, endothelial cell function, and blood coagulation system in patients undergoing coronary artery bypass grafting (CABG) to aspirin monotherapy. The patients were randomized into atorvastatin plus aspirin combined therapy group and aspirin monotherapy group. Reduced total cholesterol in the combined therapy group was found in a short term of medication for 14 days. On postoperative day (POD)-14, inhibitory effects of the combined therapy on whole blood aggregation as well as platelet activation assessed by flow cytometry were stronger than those of the monotherapy. Furthermore, cytokine, cytokine receptors, c-reactive protein and alpha1-acid glycoprotein in the combined therapy group were down-regulated on POD-14. At the same time, circulating levels of thromboxane A(2), vascular endothelial growth factor and thrombin-antithrombin III complex as well as P-selectin, L-selectin and intercellular adhesion molecule-1 were down-regulated, while E-selectin and transforming growth factor-beta1 was up-regulated. Atorvastatin plus aspirin combined therapy may improve inflammatory responses, accelerated platelet function, vascular endothelial cell function, blood coagulation system at the early stage such as 14th day after CABG. In conclusion, atorvastatin and aspirin combined therapy may bring beneficial effects to the patient after CABG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号