首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   38篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   23篇
  2014年   22篇
  2013年   43篇
  2012年   34篇
  2011年   34篇
  2010年   22篇
  2009年   12篇
  2008年   26篇
  2007年   38篇
  2006年   30篇
  2005年   34篇
  2004年   24篇
  2003年   26篇
  2002年   26篇
  2001年   7篇
  2000年   12篇
  1999年   5篇
  1998年   8篇
  1997年   11篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   7篇
  1982年   2篇
  1981年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   5篇
  1968年   2篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
131.
132.
Cancer metastasis is the life‐threatening aspect of cancer and is usually resistant to standard treatment. We report here a targeted therapy strategy for cancer metastasis using a genetically‐modified strain of Salmonella typhimurium. The genetically‐modified strain of S. typhimurium is auxotrophic for the amino acids arginine and leucine. These mutations preclude growth in normal tissue but do not reduce bacterial virulence in cancer cells. The tumor‐targeting strain of S. typhimurium, termed A1‐R, and expressing green fluorescent protein (GFP), was administered to both axillary lymph and popliteal lymph node metastasis of human pancreatic cancer and fibrosarcoma, respectively, as well as lung metastasis of the fibrosarcoma in nude mice. The bacteria were delivered via a lymphatic channel to target the lymph node metastases and systemically via the tail vein to target the lung metastasis. The cancer cells expressed red fluorescent protein (RFP) in the cytoplasm and GFP in the nucleus linked to histone H2B, enabling color‐coded real‐time imaging of the bacteria targeting the metastatic tumors. After 7–21 days of treatment, the metastases were eradicated without the need of chemotherapy or any other treatment. No adverse effects were observed. This new strategy demonstrates the clinical potential of targeting and curing cancer metastasis with engineered bacteria without the need of toxic chemotherapy. J. Cell. Biochem. 106: 992–998, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
133.
Keloid is a fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. The keloid matrix contains excess collagen and glycosaminoglycans (GAGs), but lacks elastic fiber. However, the roles of these matrix components in the pathogenesis of keloid are largely unknown. Here, we show that elastin and DANCE (also known as fibulin-5), a protein required for elastic fiber formation, are not deposited in the extracellular matrix of keloids, due to excess accumulation of chondoitin sulfate (CS), although the expression of elastin and DANCE is not affected. Amount of CS accumulated in the keloid legion was 6.9-fold higher than in normal skin. Fibrillin-1, a scaffold protein for elastic fiber assembly, was abnormally distributed in the keloid matrix. Addition of purified CS to keloid fibroblast culture resulted in abnormal deposition of fibrillin-1, concomitant with significantly decreased accumulation of elastin and DANCE in the extracellular matrix. We propose that CS plays a crucial role in the development of keloid lesions through inhibition of elastic fiber assembly.  相似文献   
134.
135.
Four labdane alkaloids, haterumaimides N-Q (1-4), were isolated from an ascidian Lissoclinum sp. and their structures were elucidated by chemical and spectral analyses. Investigation of the structure-activity relationships of haterumaimides J-K, N-Q, and 14 related compounds suggested that the presence of hydroxyl groups at C-6, C-7, C-12, and C-18, a chlorine atom at C-2, and an imido NH in ring C should be essential for cytotoxicity against P388 cells.  相似文献   
136.
We have developed a new in vivo mouse model to image single cancer‐cell dynamics of metastasis to the lung in real‐time. Regulating airflow volume with a novel endotracheal intubation method enabled controlling lung expansion adequate for imaging of the exposed lung surface. Cancer cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm were injected in the tail vein of the mouse. The right chest wall was then opened in order to image metastases on the lung surface directly. After each observation, the chest wall was sutured and the air was suctioned in order to re‐inflate the lung, in order to keep the mice alive. Observations have been carried out for up to 8 h per session and repeated up to six times per mouse thus far. The seeding and arresting of single cancer cells on the lung, accumulation of cancer‐cell emboli, cancer‐cell viability, and metastatic colony formation were imaged in real‐time. This new technology makes it possible to observe real‐time monitoring of cancer‐cell dynamics of metastasis in the lung and to identify potential metastatic stem cells. J. Cell. Biochem. 109: 58–64, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
137.
The inhibitory action of compressed hydrocarbon gases on the growth of the yeast Saccharomyces cerevisiae was investigated quantitatively by microcalorimetry. Both the 50% inhibitory pressure (IP(50)) and the minimum inhibitory pressure (MIP), which are regarded as indices of the toxicity of hydrocarbon gases, were determined from growth thermograms. Based on these values, the inhibitory potency of the hydrocarbon gases increased in the order methane < ethane < propane < i-butane < n-butane. The toxicity of these hydrocarbon gases correlated to their hydrophobicity, suggesting that hydrocarbon gases interact with some hydrophobic regions of the cell membrane. In support of this, we found that UV absorbing materials at 260 nm were released from yeast cells exposed to compressed hydrocarbon gases. Additionally, scanning electron microscopy indicated that morphological changes occurred in these cells.  相似文献   
138.
A gram-positive thermotolerant bacterium, designated strain RKK-04, was isolated from a fermented Thai fish sauce broth as it demonstrated high proteolytic activity. A phylogenetic analysis based on comparisons of 16S rRNA gene sequences showed that strain RKK-04 is Bacillus licheniformis. The proteolytic enzyme, which was purified 80-fold with 18% yield, has a molecular mass of 31 kDa and an isoelectric point higher than 9.3. The optimum pH and temperature of the enzyme activity were found to be 10.0 and 50°C, respectively. The addition of diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride completely inhibited enzymatic activity. These results showed that the enzyme is a subtilisin-like alkaline serine proteinase. On the other hand, the enzyme exhibited unique cleavage sites in oxidized insulin B-chain that differed from those of other subtilisin-like proteases. High enzymatic activity was also retained under high salt conditions (30% NaCl). The myosin heavy chain of fish protein was completely digested by reaction with this enzyme. Thus the halotolerant proteinase from B. licheniformis RKK-04 is a key enzyme for fish sauce fermentation.  相似文献   
139.
The 26S proteasome, a central enzyme for ubiquitin-dependent proteolysis, is a highly complex structure comprising 33 distinct subunits. Recent studies have revealed multiple dedicated chaperones involved in proteasome assembly both in yeast and in mammals. However, none of these chaperones is essential for yeast viability. PAC1 is a mammalian proteasome assembly chaperone that plays a role in the initial assembly of the 20S proteasome, the catalytic core of the 26S proteasome, but does not cause a complete loss of the 20S proteasome when knocked down. Thus, both chaperone-dependent and -independent assembly pathways exist in cells, but the contribution of the chaperone-dependent pathway remains unclear. To elucidate its biological significance in mammals, we generated PAC1 conditional knockout mice. PAC1-null mice exhibited early embryonic lethality, demonstrating that PAC1 is essential for mammalian development, especially for explosive cell proliferation. In quiescent adult hepatocytes, PAC1 is responsible for producing the majority of the 20S proteasome. PAC1-deficient hepatocytes contained normal amounts of the 26S proteasome, but they completely lost the free latent 20S proteasome. They also accumulated ubiquitinated proteins and exhibited premature senescence. Our results demonstrate the importance of the PAC1-dependent assembly pathway and of the latent 20S proteasomes for maintaining cellular integrity.The 26S proteasome is a eukaryotic ATP-dependent protease responsible for the degradation of proteins tagged with polyubiquitin chains (21). The ubiquitin-dependent proteolysis by the proteasome plays a pivotal role in various cellular processes by catalyzing the selective degradation of short-lived regulatory proteins as well as damaged proteins. Thus, the proteasome is essential for the viability of all eukaryotic cells.The 26S proteasome is a large protein complex consisting of two portions; one is the catalytic 20S proteasome of approximately 700 kDa (also called the 20S core particle), and the other is the 19S regulatory particle (RP; also called PA700) of approximately 900 kDa, both of which are composed of a set of multiple distinct subunits (70). The 20S proteasome is a cylindrically shaped stack of four heptameric rings, where the outer and inner rings each are composed of seven homologous α subunits (α1 to α7) and seven homologous β subunits (β1 to β7), respectively (5). The proteolytic active sites reside within the central chamber enclosed by the two inner β-rings, while a small channel formed by the outer α-ring, which is primarily closed, restricts the access of native proteins to the catalytic chamber. Thus, the 20S proteasome is a latent enzyme. Appending 19S RP, which consists of 19 different subunits, to the α-ring enables the 20S proteasome to degrade native proteins; 19S RP accepts ubiquitin chains of substrate proteins, removes ubiquitin chains while unfolding the substrates, and feeds the substrates into the interior proteolytic chamber of the 20S proteasome through the α-ring that is opened when the C-terminal tails of the ATPase subunits of 19S RP are inserted into the intersubunit spaces of the α-ring (24, 62, 74). However, it also has been reported that some denatured or unstructured proteins can be degraded directly by the 20S proteasome even in the absence of 19S RP and ubiquitination (37, 39).Much attention has been focused on how such a highly elaborate structure is achieved. Recent studies have identified various proteasome-dedicated chaperones that assist in the assembly of the proteasome in eukaryotic cells (23, 40, 56, 57, 65, 66). In yeast, while most of the proteasome subunits are essential for viability, the deletion of any of these chaperones does not cause lethality. In fact, many, if not all, of the deletions exhibit subtle phenotypes. In mammalian cells, although the knockdown of the assembly chaperones reduced proteasome assembly and thus proteasome activity, leading to slow cell growth, the degree of reduction was much lower than that which occurred following the knockdown of the proteasome subunit itself (33, 35, 40). These results indicate that the assembly chaperones play an auxiliary role in proteasome biogenesis.Proteasome assembly chaperone 1 (PAC1) is one of the assembly chaperones originally identified in mammalian cells (34). PAC1 plays a role in α-ring formation that occurs during the initial assembly of the 20S proteasome; it also prevents the aberrant dimerization of the α-ring. As is the case for most assembly chaperones, the knockdown of PAC1 in mammalian cells decreases proteasome activity but to a lesser extent than that in, for example, β2 knockdown (34, 35). Therefore, both PAC1-dependent and -independent assembly pathways exist in cells, but the importance of the PAC1-dependent pathway remains elusive. To further elucidate the biological significance of PAC1 and PAC1-dependent proteasome biogenesis, we generated conditional mouse mutants carrying an inactivating mutation in Psmg1, the gene coding for PAC1 protein, in the whole body, the nervous system, and in the liver. Our results demonstrate that PAC1 is essential for the development of a mouse, and that it plays important roles in maintaining cellular integrity in quiescent tissue. Our study revealed for the first time the importance of chaperone-mediated proteasome biogenesis in a whole-body mammalian system and may provide valuable knowledge in medical drug development targeting proteasomes.  相似文献   
140.
Based on the HTS hit compound 1a, an inhibitor of β-1,6-glucan synthesis, we synthesized novel pyridobenzimidazole derivatives and evaluated their antifungal activity. Among the compounds synthesized, we identified the potent compound 15e, which exhibits excellent activity superior to fluconazole against both Candida glabrata and Candida krusei. From the SAR study, we revealed essential moieties for antifungal activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号