首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   6篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   10篇
  2015年   4篇
  2014年   13篇
  2013年   12篇
  2012年   16篇
  2011年   17篇
  2010年   11篇
  2009年   7篇
  2008年   6篇
  2007年   13篇
  2006年   5篇
  2005年   11篇
  2004年   10篇
  2003年   4篇
  2002年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有181条查询结果,搜索用时 20 毫秒
81.
Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor (serpin) and a key molecule that regulates fibrinolysis by inactivating human plasminogen activators. Here we show that two important human pathogens, the plague bacterium Yersinia pestis and the enteropathogen Salmonella enterica serovar Typhimurium, inactivate PAI-1 by cleaving the R346-M347 bait peptide bond in the reactive center loop. No cleavage of PAI-1 was detected with Yersinia pseudotuberculosis, an oral/fecal pathogen from which Y. pestis has evolved, or with Escherichia coli. The cleavage and inactivation of PAI-1 were mediated by the outer membrane proteases plasminogen activator Pla of Y. pestis and PgtE protease of S. enterica, which belong to the omptin family of transmembrane endopeptidases identified in Gram-negative bacteria. Cleavage of PAI-1 was also detected with the omptins Epo of Erwinia pyrifoliae and Kop of Klebsiella pneumoniae, which both belong to the same omptin subfamily as Pla and PgtE, whereas no cleavage of PAI-1 was detected with omptins of Shigella flexneri or E. coli or the Yersinia chromosomal omptins, which belong to other omptin subfamilies. The results reveal a novel serpinolytic mechanism by which enterobacterial species expressing omptins of the Pla subfamily bypass normal control of host proteolysis.Plasminogen activator inhibitor 1 (PAI-1) is a key regulator of the mammalian fibrinolytic/plasminogen system (29, 37). The fibrinolytic system comprises the serine protease zymogen plasminogen, urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), PAI-1, and plasmin inhibitor α2-antiplasmin (α2AP) (for a review, see reference 52). Plasminogen is converted to plasmin, which is a broad-spectrum serine protease that dissolves fibrin in blood clots, degrades laminin of basement membranes, and activates matrix metalloproteinases that degrade collagens and gelatins in tissue barriers. Herewith, plasmin controls physiological processes such as fibrinolysis/coagulation, cell migration and invasion, and tumor metastasis (29, 37). PAI-1 maintains normal hemostasis by inhibiting the function of the plasminogen activators tPA and uPA, which are serine proteases and highly specific for cleavage of the plasminogen molecule. tPA binds to fibrin and is associated with plasmin-mediated breakdown of fibrin clots, whereas uPA has low affinity for fibrin and associates with cell surface proteolysis, cellular migration, and damage of tissue barriers (52).The mammalian fibrinolytic and coagulation systems are targeted by invasive bacterial pathogens during infection (reviewed in references 6, 11, 34, and 61). In bacterial sepsis, increased production of fibrin clots at a damaged endothelium results from enhanced thrombin-catalyzed fibrin generation and from an increased serum level of PAI-1. Coagulation can protect the host by activating immune systems or by physically restraining the bacteria (6, 15, 25, 41). On the other hand, several invasive bacterial pathogens enhance fibrinolysis either through direct plasminogen activation or by immobilizing plasminogen/plasmin on the surface (6, 34, 61). Activation of the plasminogen system by bacteria enhances bacterial dissemination and invasiveness through release of bacteria from fibrin deposits and through degradation of tissue barriers. Bacterial plasminogen activators and receptors have been under extensive structural and functional studies, but much less is known about interactions of bacteria with the regulatory proteins of fibrinolysis.PAI-1 is present in a large variety of tissues and is secreted by several human cells (37). In healthy individuals, the level of PAI-1 antigen in human plasma is low (6 to 85 ng/ml), but synthesis and secretion of PAI-1 are strongly elevated in disease states and induced by, e.g., inflammatory cytokines and endotoxin of Gram-negative bacteria (37). PAI-1 is a serine protease inhibitor (serpin), which exists in two forms. In its active form, PAI-1 rapidly inactivates both tPA and uPA by forming a covalent bond between the hydroxyl group of a catalytic serine residue of tPA/uPA and the carboxyl group of the residue R346 at the reactive center loop (RCL) of PAI-1 (52). The RCL of PAI-1 is a 19-amino-acid-long flexible loop which inserts into the catalytic center of tPA/uPA and contains the “bait” residues R346 and M347, which mimic the normal target of tPA/uPA. PAI-1 induces distortion of the active site of tPA/uPA, which prevents completion of the catalytic cycle (70). The active form of PAI-1 is unstable, with a half-life of 2 to 3 h at 37°C, and it changes spontaneously and irreversibly into a latent form, where the RCL is incorporated into a central β-sheet of the PAI-1 molecule and therefore cannot react with tPA or uPA. This conformational change takes place also after proteolytic cleavage of PAI-1 at the R346-M347 bond. The active form of PAI-1 binds with high affinity to vitronectin (Vn), and PAI-1/Vn complex formation increases the half-life of PAI-1 2- to 4-fold (10, 46, 69). Most circulating PAI-1 is thought to be in a complex with Vn, and the complex serves as the reservoir of physiologically active PAI-1 (44).Plague disease caused by Yersinia pestis is associated with imbalance of the fibrinolytic system, and decreased fibrin(ogen) deposition has been observed in both bubonic and pneumonic plague (11, 36). The plasminogen activator Pla, which is encoded by a Y. pestis-specific 9.5-kb virulence plasmid, pPCP1 (59), does not degrade fibrin directly but mimics the action of tPA and uPA in converting plasminogen to plasmin by cleavage at R561-V562. Pla also degrades the serpin α2AP and thus creates uncontrolled plasmin activity (32, 60). Pla belongs to the omptin superfamily of bacterial β-barrel outer membrane proteases (for reviews of omptins, see references 21 and 23). The omptins share molecular size and transmembrane fold but differ markedly in their substrate selectivities. In their catalytic centers, omptins combine structural features of aspartic and serine proteases (66).Increased fibrinolysis observed in plague led us to investigate whether Y. pestis increases plasminogen activation also indirectly by controlling the activity of PAI-1. We compared Y. pestis to Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis, and the study also included omptins of other enterobacterial species.  相似文献   
82.
One main feature of apoptosis is the sequential degradation of the nuclear structure, including the fragmentation of chromatin and caspase-mediated cleavage of various nuclear proteins. Among these proteins is the Nuclear Mitotic Apparatus protein (NuMA) which plays a specific role in the organization of the mitotic spindle. The exact function of NuMA in the interphase nucleus is unknown, but a number of reports have suggested that it may play a role in chromatin organization and/or gene expression. Here we show that upon cleavage in apoptotic cells, the N-terminal cleavage fragment of NuMA is solubilized while the C-terminal fragment remains associated with the condensed chromatin. Using pancaspase inhibitor z-VAD-fmk and caspase-3 deficient MCF-7 cells, we further show that the solubilization is dependent on caspase-mediated cleavage of NuMA. Finally, the silencing of NuMA by RNAi accelerated nuclear breakdown in apoptotic MCF-7 cells. These results suggest that NuMA may provide structural support in the interphase nucleus by contributing to the organization of chromatin.  相似文献   
83.
Duchenne muscular dystrophy is a frequent muscular disorder caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that contributes to the stabilization of muscle fiber membrane during muscle activity. Affected individuals show progressive muscle wasting that generally causes death by age 30. In this study, the dystrophic mdx5Cv mouse model was used to investigate the effects of green tea extract, its major component (–)-epigallocatechin gallate, and pentoxifylline on dystrophic muscle quality and function. Three-week-old mdx5Cv mice were fed for either 1 or 5 wk a control chow or a chow containing the test substances. Histological examination showed a delay in necrosis of the extensor digitorum longus muscle in treated mice. Mechanical properties of triceps suræ muscles were recorded while the mice were under deep anesthesia. Phasic and tetanic tensions of treated mice were increased, reaching values close to those of normal mice. The phasic-to-tetanic tension ratio was corrected. Finally, muscles from treated mice exhibited 30–50% more residual force in a fatigue assay. These results demonstrate that diet supplementation of dystrophic mdx5Cv mice with green tea extract or (–)-epigallocatechin gallate protected muscle against the first massive wave of necrosis and stimulated muscle adaptation toward a stronger and more resistant phenotype. pharmacotherapy; muscular disorders; dystrophic mdx5cv mouse; muscle mechanical properties; muscle histology  相似文献   
84.
85.
86.

Background  

Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism post partum. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows.  相似文献   
87.
The authors explored morningness-eveningness propensity in adults born prematurely at very low birth weight (VLBW; 相似文献   
88.
89.

Background

Assessment of the gluten-induced small-intestinal mucosal injury remains the cornerstone of celiac disease diagnosis. Usually the injury is evaluated using grouped classifications (e.g. Marsh groups), but this is often too imprecise and ignores minor but significant changes in the mucosa. Consequently, there is a need for validated continuous variables in everyday practice and in academic and pharmacological research.

Methods

We studied the performance of our standard operating procedure (SOP) on 93 selected biopsy specimens from adult celiac disease patients and non-celiac disease controls. The specimens, which comprised different grades of gluten-induced mucosal injury, were evaluated by morphometric measurements. Specimens with tangential cutting resulting from poorly oriented biopsies were included. Two accredited evaluators performed the measurements in blinded fashion. The intraobserver and interobserver variations for villus height and crypt depth ratio (VH:CrD) and densities of intraepithelial lymphocytes (IELs) were analyzed by the Bland-Altman method and intraclass correlation.

Results

Unevaluable biopsies according to our SOP were correctly identified. The intraobserver analysis of VH:CrD showed a mean difference of 0.087 with limits of agreement from −0.398 to 0.224; the standard deviation (SD) was 0.159. The mean difference in interobserver analysis was 0.070, limits of agreement −0.516 to 0.375, and SD 0.227. The intraclass correlation coefficient in intraobserver variation was 0.983 and that in interobserver variation 0.978. CD3+ IEL density countings in the paraffin-embedded and frozen biopsies showed SDs of 17.1% and 16.5%; the intraclass correlation coefficients were 0.961 and 0.956, respectively.

Conclusions

Using our SOP, quantitative, reliable and reproducible morphometric results can be obtained on duodenal biopsy specimens with different grades of gluten-induced injury. Clinically significant changes were defined according to the error margins (2SD) of the analyses in VH:CrD as 0.4 and in CD3+-stained IELs as 30%.  相似文献   
90.

Objectives

To examine whether the adverse effects of slow prenatal and postnatal growth on cognitive function persist to old age and predict age related cognitive decline.

Design and Setting

A longitudinal birth cohort study of men born in Helsinki, Finland 1934-44.

Participants

Nine-hundred-thirty-one men of the Helsinki Birth Cohort Study, with detailed data on growth from birth to adulthood, aged 20.1 (SD = 1.4) at the first and 67.9 (SD = 2.5) years at the second cognitive testing.

Main Outcome Measures

The Finnish Defense Forces Basic Intellectual Ability Test assessed twice over nearly five decades apart.

Results

Lower weight, length and head circumference at birth were associated with lower cognitive ability at 67.9 years (1.04–1.55 points lower ability per each standard deviation [SD] unit decrease in body size, 95% Confidence Interval [95%CI]: 0.05 to 2.72) and with cognitive decline after 20.1 years (0.07–0.11 SD decline over time per each SD decrease in body size, 95%CI:0.00 to 0.19). Men who were born larger were more likely to perform better in the cognitive ability test over time (1.22–1.43 increase in odds to remain in the top relative to the lower two thirds in ability over time per each SD increase in body size, 95%CI:1.04 to 1.79) and were more resilient to cognitive decline after 20.1 years (0.69 to 0.76 decrease in odds to decline from than remain in the top third of ability over time per each SD increase in body size, 95%CI:0.49 to 0.99). Slower growth between birth and two years in weight, height and body mass index was associated with lower cognitive ability at 67.9 years, but not with cognitive decline.

Conclusions

Poorer lifetime cognitive ability is predicted by slower growth before and after birth. In predicting resilience to age related cognitive decline, the period before birth seems to be more critical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号