首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   9篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   16篇
  2012年   15篇
  2011年   12篇
  2010年   9篇
  2009年   12篇
  2008年   20篇
  2007年   12篇
  2006年   10篇
  2005年   11篇
  2004年   9篇
  2003年   4篇
  2002年   13篇
  2001年   6篇
  2000年   14篇
  1999年   6篇
  1998年   1篇
  1997年   9篇
  1996年   5篇
  1995年   8篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   8篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1948年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
61.
Cyclic lipopeptides (CLPs) are versatile molecules produced by a variety of bacterial genera, including plant-associated Pseudomonas spp. CLPs are composed of a fatty acid tail linked to a short oligopeptide, which is cyclized to form a lactone ring between two amino acids in the peptide chain. CLPs are very diverse both structurally and in terms of their biological activity. The structural diversity is due to differences in the length and composition of the fatty acid tail and to variations in the number, type, and configuration of the amino acids in the peptide moiety. CLPs have received considerable attention for their antimicrobial, cytotoxic, and surfactant properties. For plant-pathogenic Pseudomonas spp., CLPs constitute important virulence factors, and pore formation, followed by cell lysis, is their main mode of action. For the antagonistic Pseudomonas sp., CLPs play a key role in antimicrobial activity, motility, and biofilm formation. CLPs are produced via nonribosomal synthesis on large, multifunctional peptide synthetases. Both the structural organization of the CLP synthetic templates and the presence of specific domains and signature sequences within peptide synthetase genes will be described for both pathogenic and antagonistic Pseudomonas spp. Finally, the role of various genes and regulatory mechanisms in CLP production by Pseudomonas spp., including two-component regulation and quorum sensing, will be discussed in detail.  相似文献   
62.
Vanillin is one of the world''s most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world''s vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker''s yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.In 2007, the global market for flavor and fragrance compounds was an impressive $20 billion, with an annual growth of 11 to 12%. The isolation and naming of vanillin (3-methoxy-4-hydroxybenzaldehyde) as the main component of vanilla flavor in 1859 (8), and the ensuing chemical synthesis in 1874 (41), in many ways marked the true birth of this industry, and this compound remains the global leader in aroma compounds. The original source of vanillin is the seed pod of the vanilla orchid (Vanilla planifolia), which was grown by the Aztecs in Mexico and brought to Europe by the Spaniards in 1520. Production of natural vanillin from the vanilla pod is a laborious and slow process, which requires hand pollination of the flowers and a 1- to 6-month curing process of the harvested green vanilla pods (37). Production of 1 kg of vanillin requires approximately 500 kg of vanilla pods, corresponding to the pollination of approximately 40,000 flowers. Today, only about 0.25% (40 tons out of 16,000) of vanillin sold annually originates from vanilla pods, while most of the remainder is synthesized chemically from lignin or fossil hydrocarbons, in particular guaiacol. Synthetically produced vanillin is sold for approximately $15 per kg, compared to prices of $1,200 to $4,000 per kg for natural vanillin (46).An attractive alternative is bioconversion or de novo biosynthesis of vanillin; for example, vanillin produced by microbial conversion of the plant constituent ferulic acid is marketed at $700 per kilogram under the trade name Rhovanil Natural (produced by Rhodia Organics). Ferulic acid and eugenol are the most attractive plant secondary metabolites amenable for bioconversion into vanillin, since they can be produced at relatively low costs: around $5 per kilogram (37). For the bioconversion of eugenol or ferulic acid into vanillin, several microbial species have been tested, including gram-negative bacteria of the Pseudomonas genus, actinomycetes of the genera Amycolatopsis and Streptomyces, and the basidiomycete fungus Pycnoporus cinnabarinus (19, 23, 25, 27, 31, 34, 35, 36, 45, 48). In experiments where the vanillin produced was absorbed on resins, Streptomyces cultures afforded very high vanillin yields (up to 19.2 g/liter) and conversion rates as high as 55% were obtained (15). Genes for the responsible enzymes from some of these organisms were isolated and expressed in Escherichia coli, and up to 2.9 g/liter of vanillin were obtained by conversion of eugenol or ferulic acid (1, 3, 32, 49).Compared to bioconversion, de novo biosynthesis of vanillin from a primary metabolite like glucose is much more attractive, since glucose costs less than $0.30/kilogram (42). One route for microbial production of vanillin from glucose was devised by Frost and coworker Li (6, 20), combining de novo biosynthesis of vanillic acid in E. coli with enzymatic in vitro conversion of vanillic acid to vanillin. 3-Dehydroshikimic acid is an intermediate in the shikimate pathway for biosynthesis of aromatic amino acids, and the recombinant E. coli was engineered to dehydrate this compound to form protocatechuic acid (3,4-dihydroxybenzoic acid) and methylate this to form vanillic acid. The vanillic acid was subsequently converted into vanillin in vitro using carboxylic acid reductase isolated from Neurospora crassa. The main products of the in vivo step were protocatechuic acid, vanillic acid, and isovanillic acid in an approximate ratio of 9:4:1, indicating a bottleneck at the methylation reaction and nonspecificity of the OMT (O-methyltransferase) enzyme for the meta-hydroxyl group of protocatechuic acid. Serious drawbacks of this scheme are the lack of an in vivo step for the enzymatic reduction of vanillic acid, demanding the addition of isolated carboxylic acid reductase and costly cofactors such as ATP, NADPH, and Mg2+, and the generation of isovanillin as a contaminating side product.In this study, we have genetically engineered single-recombination microorganisms to synthesize vanillin from glucose, according to the metabolic route depicted in Fig. Fig.1.1. To avoid the synthesis of isovanillin as an undesired side product, a large array of OMTs was screened for the desired high substrate specificity, and an appropriate enzyme was identified. A synthetic version of an aromatic carboxylic acid reductase (ACAR) gene, optimized for yeast codon usage, was introduced to achieve the reduction step. The vanillin pathway was introduced into both Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, and significant levels of vanillin production were obtained in both organisms. Vanillin β-d-glucoside is the form in which vanillin accumulates and is stored in the fresh pod of the vanilla orchid (Vanilla planifolia). During the “curing” process of the pod, β-glucosidases are liberated and facilitate a partial conversion of the vanillin β-d-glucoside into vanillin. Upon consumption or application, the conversion of vanillin β-d-glucoside into free vanillin by enzymes in the saliva or in the skin microflora can provide for a slow-release effect that prolongs and augments the sensory event, as is the case for other flavor glycosides investigated, such as menthol glucoside (14, 16). In addition to the increased value of vanillin β-d-glucoside as an aroma or flavor compound, production of the glucoside in yeast may offer several advantages. Vanillin β-d-glucoside is more water soluble than vanillin, but most importantly, compounds such as vanillin in high concentrations are toxic to many living cells (4). It has been shown that glucosides of toxic compounds are less toxic to yeasts (24). We found this to be the case with vanillin and S. cerevisiae yeast as well. Thus, to facilitate storage and accumulation of higher vanillin yields, we introduced a step for vanillin glucosylation in S. pombe.Open in a separate windowFIG. 1.Biosynthetic scheme for de novo biosynthesis of vanillin in Schizosaccharomyces pombe and outline of the different vanillin catabolites and metabolic side products observed in different yeast strains and constructs. Gray arrows, primary metabolic reactions in yeast; black arrows, enzyme reactions introduced by metabolic engineering; diagonally striped arrows, undesired inherent yeast metabolic reactions.  相似文献   
63.
64.
Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.  相似文献   
65.
Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.  相似文献   
66.
Protein tyrosine phosphatase basophil-like (PTP-BL), also known as PTPN13, represents a large multi domain non-transmembrane scaffolding protein that contains five PDZ domains. Here we report the complete resonance assignments of the extended PDZ3 domain of PTP-BL. These assignments provide a basis for the detailed structural investigation of the interaction between the PDZ domains of PTP-BL as well as of their interaction with ligands. It will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTB-BL.  相似文献   
67.
Measurements of overall protein degradation rates in wild-type and clpP mutant Bacillus subtilis cells revealed that stress- or starvation-induced bulk protein turnover depends virtually exclusively on the ClpP peptidase. ClpP is also essential for intracellular protein quality control, and in its absence newly synthesized proteins were highly prone to aggregation even at 37 degrees C. Proteomic comparisons between the wild type and a DeltaclpP mutant showed that the absence of ClpP leads to severe perturbations of "normal" physiology, complicating the detection of ClpP substrates. A pulse-chase two-dimensional gel approach was therefore used to compare wild-type and clpP mutant cultures that had been radiolabeled in mid-exponential phase, by quantifying changes in relative spot intensities with time. The results showed that overall proteolysis is biased toward proteins with vegetative functions which are no longer required (or are required at lower levels) in the nongrowing state. The identified substrate candidates for ClpP-dependent degradation include metabolic enzymes and aminoacyl-tRNA synthetases. Some substrate candidates catalyze the first committed step of certain biosynthetic pathways. Our data suggest that ClpP-dependent proteolysis spans a broad physiological spectrum, with regulatory processing of key metabolic components and regulatory proteins on the one side and general bulk protein breakdown at the transition from growing to nongrowing phases on the other.  相似文献   
68.
Protein turnover is generally regarded as a major maintenance process, but experimental evidence to support this contention is scarce. Here we quantify the component of dark respiration rate associated with overall protein turnover of tissues in vivo. The effect of an inhibitor of cytosolic protein synthesis (cycloheximide, CHM) on dark respiration was tested on a cell suspension from potato ( Solanum tuberosum L.) and quantified on leaf discs of expanding and full-grown primary leaves of bean ( Phaseolus vulgaris L.). The in vivo effect of CHM on protein biosynthesis was assessed by monitoring the inhibition of the induction of the ethylene-forming enzyme (EFE) activity. The present method yields the energy costs of turnover of the total pool of proteins irrespective of their individual turnover rates. Average turnover rates were derived from the respiratory costs and the specific costs for turnover.
Inhibition of respiration by CHM was readily detectable in growing-cell suspensions and discs of expanding leaves, The derived respiratory costs of protein turnover in expanding leaves were maximally 17–37% of total respiration. Turnover costs in full-grown primary leaves of bean amounted to 17–21% of total dark respiration. The maximum degradation constants (i.e. Kd-values) derived for growing and full-grown leaves were up to 2.42 × 10−6 and 1.12 × l0−6 s−1, respectively.  相似文献   
69.
70.
Abstract One problem in investigating group A streptococcal infections and virulence is the lack of appropriate in vivo models. In this study we introduce the chicken embryo model for determining virulence of Streptococcus pyogenes . We found that M protein positive strains, if administered intravenously, were highly virulent for 12-day-old chicken embryos. The LD50 of the strains tested could be correlated directly with the amount of cell wall exposed M protein, which has been determined by the capacity of streptococci to bind fibrinogen and by the ability of streptococci to survive in fresh normal human blood. The number of colony forming units (cfu) of M+ strains necessary to kill 50% of embryonated eggs was significantly lower (<102 cfu) than for M variants (>104 cfu). Albumin and/or IgG binding to streptococcal cells, which can also take place in proteins of the M protein family which do not bind to fibrinogen, did not show that clear correlation to the virulence in chicken embryos that did fibrinogen binding. Application of anti-streptococcal M protein antisera from chicken and rabbit reduced the lethality of the chicken embryos. In contrast, no correlation was found between lethality of chicken embryos and the in vitro production of erythrogenic toxins by the administered strains. Thus the results indicate that the presence of M-protein with its fibrinogen binding activity on the streptococcal cell surface is necessary for virulence of group A streptococci in the chicken embryo model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号