首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   9篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   16篇
  2013年   13篇
  2012年   15篇
  2011年   8篇
  2010年   12篇
  2009年   7篇
  2008年   3篇
  2007年   14篇
  2006年   6篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
11.
The pathogenicity, mode of transmission, tissue specificity of infection and the small subunit rRNA (SSU-rRNA) gene sequences of the three new microsporidian isolates from the silkworm Bombyx mori were studied. Out of the three, NIK-2r revealed life cycle features and SSU-rRNA gene sequence similar to Nosema bombycis, suggesting that it is N. bombycis. The other two, NIK-4m and NIK-3h, differed from each other as well as from N. bombycis. NIK-4m was highly pathogenic and did not show any vertical transmission, in accordance with the apparent lack of gonadal infection, whereas NIK-3h was less pathogenic and vertical transmission was not detected but could not be excluded. Phylogenetic analysis based on SSU-rRNA gene sequence placed NIK-3h and NIK-4m in a distinct clade that included almost all the Vairimorpha species and Nosema species that infect lepidopteran and non-lepidopteran hosts, while NIK-2r was included in a clade containing almost all the Nosema isolates that infect only lepidopteran hosts. Thus, we have presented molecular evidence that one of the three isolates is in fact the type species N. bombycis, while the other two isolates are Vairimorpha spp. There was distinct separation of microsporidian isolates infecting only lepidopteran hosts and those infecting lepidopteran and non-lepidopteran hosts, reflecting possible co-evolution of hosts and microsporidian isolates.  相似文献   
12.
Molecular phylogeny of some of the economically important silkmoths was derived using three mitochondrial genes, 12S rRNA, 16S rRNA, and COI, and the control region (CR). Maximum likelihood (ML) analyses showed two distinct clades, one consisting of moths from Bombycidae family and the other from Saturniidae family. The mitochondrial CR showed length polymorphisms with indels. The ML analyses for complete mitochondrial genome sequences of Bombyx mori (strains Aojuku, C108, Backokjam, and Xiafang), Japanese and Chinese strains of B. mandarina (Japanese mandarina and Chinese mandarina) and, Antheraea pernyi revealed two distinct clades, one comprising of B. mori strains and the other with B. mandarina, and A. pernyi forming an outgroup. Pairwise distances revealed that all of the strains of B. mori studied are closer to Chinese than to Japanese mandarina. Phylogenetic analyses based on whole mitochondrial genome sequences, the finding of a tandem triplication of a 126bp repeat element only in Japanese mandarina, and chromosome number variation in B. mandarina suggest that B. mori must have shared its recent common ancestor with Chinese mandarina. Another wild species of the Bombycidae family, Theophila religiosa, whose phylogenetic status was not clear, clustered together with the other bombycid moths in the study. Analysis of the interspecific hybrid, A. proylei gave evidence for paternal inheritance of mitochondrial DNA.  相似文献   
13.
The dysferlinopathies (e.g. LGMD2b, Myoshi myopathy) are progressive, adult-onset muscle wasting syndromes caused by mutations in the gene coding for dysferlin. Dysferlin is a large (~200kDa) membrane-anchored protein, required for maintenance of plasmalemmal integrity in muscle fibers. To facilitate analysis of dysferlin function in muscle cells, we have established a dysferlin-deficient myogenic cell line (GREG cells) from the A/J mouse, a genetic model for dysferlinopathy. GREG cells have no detectable dysferlin expression, but proliferate normally in growth medium and fuse into functional myotubes in differentiation medium. GREG myotubes exhibit deficiencies in plasma membrane repair, as measured by laser wounding in the presence of FM1-43 dye. Under the wounding conditions used, the majority (~66%) of GREG myotubes lack membrane repair capacity, while no membrane repair deficiency was observed in dysferlin-normal C2C12 myotubes, assayed under the same conditions. We discuss the possibility that the observed heterogeneity in membrane resealing represents genetic compensation for dysferlin deficiency.  相似文献   
14.

Background

Dmdmdx (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the disease phenotype but also the question of whether GCs can be used as a positive control for preclinical drug evaluations.

Methods and Findings

We performed nine pre-clinical efficacy trials (treated N = 129, untreated N = 106) of different durations in 9-to-50-week-old dystrophic mdx mice over a 3-year time period using standardized methods. In all these trials, we used either 1 mg/kg body weight of prednisone or 5 mg/kg body weight of prednisolone as positive controls to compare the efficacy of various test drugs. Data from untreated controls and GC-treated mice in the various trials have been pooled and analyzed to assess the effects of GCs on dystrophin-deficient skeletal and cardiac muscles of mdx mice. Our results indicate that continuous GC treatment results in early (e.g., at 50 days) improvements in normalized parameters such as grip strength, motor coordination and maximal in vitro force contractions on isolated EDL muscle, but these initial benefits are followed by a progressive loss of muscle strength after 100 days. We also found a significant increase in heart fibrosis that is reflected in a significant deterioration in cardiac systolic function after 100 days of treatment.

Conclusion

Continuous administration of prednisone to mdx mice initially improves skeletal muscle strength, but further therapy result in deterioration of muscle strength and cardiac function associated with enhanced cardiac fibrosis. These results suggest that GCs may not serve as an appropriate positive control for long-term mdx mouse preclinical trials.  相似文献   
15.
16.

Background

The Indian golden saturniid silkmoth (Antheraea assama), popularly known as muga silkmoth, is a semi-domesticated silk producing insect confined to a narrow habitat range of the northeastern region of India. Owing to the prevailing socio-political problems, the muga silkworm habitats in the northeastern region have not been accessible hampering the phylogeography studies of this rare silkmoth. Recently, we have been successful in our attempt to collect muga cocoon samples, although to a limited extent, from their natural habitats. Out of 87 microsatellite markers developed previously for A. assama, 13 informative markers were employed to genotype 97 individuals from six populations and analyzed their population structure and genetic variation.

Methodology/Principal Findings

We observed highly significant genetic diversity in one of the populations (WWS-1, a population derived from West Garo Hills region of Meghalaya state). Further analysis with and without WWS-1 population revealed that dramatic genetic differentiation (global FST = 0.301) was due to high genetic diversity contributed by WWS-1 population. Analysis of the remaining five populations (excluding WWS-1) showed a marked reduction in the number of alleles at all the employed loci. Structure analysis showed the presence of only two clusters: one formed by WWS-1 population and the other included the remaining five populations, inferring that there is no significant genetic diversity within and between these five populations, and suggesting that these five populations are probably derived from a single population. Patterns of recent population bottlenecks were not evident in any of the six populations studied.

Conclusions/Significance

A. assama inhabiting the WWS-1 region revealed very high genetic diversity, and was genetically divergent from the five populations studied. The efforts should be continued to identify and study such populations from this region as well as other muga silkworm habitats. The information generated will be very useful in conservation of dwindling muga culture in Northeast India.  相似文献   
17.
18.
Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a’s of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born–Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe–O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O–O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.  相似文献   
19.

Background  

Domestication of chicken is believed to have occurred in Southeast Asia, especially in Indus valley. However, non-inclusion of Indian red jungle fowl (RJF), Gallus gallus murghi in previous studies has left a big gap in understanding the relationship of this major group of birds. In the present study, we addressed this issue by analyzing 76 Indian birds that included 56 G. g. murghi (RJF), 16 G. g. domesticus (domestic chicken) and 4 G. sonneratii (Grey JF) using both microsatellite markers and mitochondrial D-loop sequences. We also compared the D-loop sequences of Indian birds with those of 779 birds obtained from GenBank.  相似文献   
20.
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.DNA double-strand breaks (DSBs) are potentially dangerous lesions, since their misrepair may cause chromosomal translocations, gene amplifications, loss of heterozygosity (LOH), and other types of genomic instability characteristic of human cancers (7, 9, 21, 40, 76, 79). DSBs are repaired predominantly by nonhomologous end joining or homologous recombination (HR), two evolutionarily conserved DSB repair mechanisms (8, 12, 16, 33, 48, 60, 71). DSBs generated during the S or G2 phase of the cell cycle may be repaired preferentially by HR, using the intact sister chromatid as a template for repair (12, 26, 29, 32, 71). Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DSBs, which has led to the proposal that SCR protects against genomic instability, cancer, and aging. Indeed, a number of human cancer predisposition genes are implicated in SCR control (10, 24, 45, 57, 75).HR entails an initial processing of the DSB to generate a free 3′ single-stranded DNA (ssDNA) overhang (25, 48, 56). This is coupled to the loading of Rad51, the eukaryotic homolog of Escherichia coli RecA, which polymerizes to form an ssDNA-Rad51 “presynaptic” nucleoprotein filament. Formation of the presynaptic filament is tightly regulated and requires the concerted action of a large number of gene products (55, 66, 68). Rad51-coated ssDNA engages in a homology search by invading homologous duplex DNA. If sufficient homology exists between the invading and invaded strands, a triple-stranded synapse (D-loop) forms, and the 3′ end of the invading (nascent) strand is extended, using the donor as a template for gene conversion. This recombination intermediate is thought to be channeled into one of the following two major subpathways: classical gap repair or synthesis-dependent strand annealing (SDSA) (48). Gap repair entails the formation of a double Holliday junction, which may resolve into either crossover or noncrossover products. Although this is a major pathway in meiotic recombination, crossing-over is highly suppressed in somatic eukaryotic cells (26, 44, 48). Indeed, the donor DNA molecule is seldom rearranged during somatic HR, suggesting that SDSA is the major pathway for the repair of somatic DSBs (26, 44, 49, 69). SDSA terminates when the nascent strand is displaced from the D-loop and pairs with the second end of the DSB to form a noncrossover product. The mechanisms underlying displacement of the nascent strand are not well understood. However, failure to displace the nascent strand might be expected to result in the production of longer gene conversion tracts during HR (36, 44, 48, 63).Gene conversion triggered in response to a Saccharomyces cerevisiae or mammalian chromosomal DSB generally results in the copying of a short (50- to 300-bp) stretch of information from the donor (short-tract gene conversion [STGC]) (14, 47, 48, 67, 69). A minority of gene conversions in mammalian cells entail more-extensive copying, generating gene conversion tracts that are up to several kilobases in length (long-tract gene conversion [LTGC]) (26, 44, 51, 54, 64). In yeast, very long gene conversions can result from break-induced replication (BIR), a highly processive form of gene conversion in which a bona fide replication fork is thought to be established at the recombination synapse (11, 36, 37, 39, 61, 63). In contrast, SDSA does not require lagging-strand polymerases and appears to be much less processive than a conventional replication fork (37, 42, 78). BIR in yeast has been proposed to play a role in LOH in aging yeast, telomere maintenance, and palindromic gene amplification (5, 41, 52). It is unclear to what extent a BIR-like mechanism operates in mammalian cells, although BIR has been invoked to explain telomere elongation in tumors lacking telomerase (13). It is currently unknown whether LTGC and STGC in somatic mammalian cells are products of mechanistically distinct pathways or whether they represent alternative outcomes of a common SDSA pathway.Vertebrate cells contain five Rad51 paralogs—polypeptides with limited sequence homology to Rad51—Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3 (74). The Rad51 paralogs form the following two major complexes: Rad51B/Rad51C/Rad51D/XRCC2 (BCDX2) and Rad51C/XRCC3 (CX3) (38, 73). Genetic deletion of any one of the rad51 paralogs in the mouse germ line produces early embryonic lethality, and mouse or chicken cells lacking any of the rad51 paralogs reveal hypersensitivity to DNA-damaging agents, reduced frequencies of HR and of sister chromatid exchanges, increased chromatid-type errors, and defective sister chromatid cohesion (18, 72, 73, 82). Collectively, these data implicate the Rad51 paralogs in SCR regulation. The purified Rad51B/Rad51C complex has been shown to assist Rad51-mediated strand exchange (62). XRCC3 null or Rad51C null hamster cells reveal a bias toward production of longer gene conversion tracts, suggesting a role for the CX3 complex in late stages of SDSA (6, 44). Rad51C copurifies with branch migration and Holliday junction resolution activities in mammalian cell extracts (35), and XRCC3, but not XRCC2, facilitates telomere shortening by reciprocal crossing-over in telomeric T loops (77). These data, taken together with the meiotic defects observed in Rad51C hypomorphic mice, suggest a specialized role for CX3, but not for BCDX2, in resolving Holliday junction structures (31, 58).To further address the roles of Rad51 paralogs in late stages of recombination, we have studied the balance between long-tract (>1-kb) and short-tract (<1-kb) SCR in XRCC2 mutant hamster cells. We found that DSB-induced gene conversion in both XRCC2 and XRCC3 mutant cells is biased in favor of LTGC. These defects were suppressed by expression of wild-type (wt) XRCC2 or XRCC3, respectively, although the dependence upon ATP binding and hydrolysis differed between the two Rad51 paralogs. These results indicate that Rad51 paralogs play a more general role in determining the balance between STGC and LTGC than was previously appreciated and suggest roles for both the BCDX2 and CX3 complexes in influencing the termination of gene conversion in mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号