首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   31篇
  2023年   3篇
  2022年   5篇
  2021年   18篇
  2020年   3篇
  2019年   8篇
  2018年   24篇
  2017年   4篇
  2016年   17篇
  2015年   24篇
  2014年   26篇
  2013年   30篇
  2012年   30篇
  2011年   30篇
  2010年   15篇
  2009年   12篇
  2008年   17篇
  2007年   17篇
  2006年   18篇
  2005年   12篇
  2004年   18篇
  2003年   8篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有383条查询结果,搜索用时 14 毫秒
351.
Disaccharide phosphorylases are increasingly applied for glycoside synthesis, since they are very regiospecific and use cheap and easy to obtain donor substrates. A promising enzyme is cellobiose phosphorylase (CP), which was discovered more than 50 years ago. Many other bacterial CP enzymes have since then been characterized, cloned and applied for glycoside synthesis. However, the general application of wild-type CP for glycoside synthesis is hampered by its relatively narrow substrate specificity. Recently we have taken some successful efforts to broaden the substrate specificity of Cellulomonas uda CP by directed evolution and protein engineering. This review will give an overview of the obtained results and address the applicability of the engineered CP enzymes for glycoside synthesis. CP is the first example of an extensively engineered disaccharide phosphorylase, and may provide valuable information for protein engineering of other phosphorylase enzymes.  相似文献   
352.
Plant microRNAs (miRNAs) and small interfering RNAs (siRNAs) bear a 2′-O-methyl group on the 3′-terminal nucleotide. This methyl group is post-synthetically added by the methyltransferase protein HEN1 and protects small RNAs from enzymatic activities that target the 3′-OH. A mutagenesis screen for suppressors of the partial loss-of-function hen1-2 allele in Arabidopsis identified second-site mutations that restore miRNA methylation. These mutations affect two subunits of the DNA-dependent RNA polymerase IV (Pol IV), which is essential for the biogenesis of 24 nt endogenous siRNAs. A mutation in RNA-dependent RNA polymerase 2, another essential gene for the biogenesis of endogenous 24-nt siRNAs, also rescued the defects in miRNA methylation of hen1-2, revealing a previously unsuspected, negative influence of siRNAs on HEN1-mediated miRNA methylation. In addition, our findings imply the existence of a negative modifier of HEN1 activity in the Columbia genetic background.  相似文献   
353.
Chagas disease, caused by the protozoan intracellular parasite Trypanosoma cruzi, is a highly neglected tropical disease, causing significant morbidity and mortality in central and south America. Current treatments are inadequate, and recent clinical trials of drugs inhibiting CYP51 have failed, exposing a lack of understanding of how to translate laboratory findings to the clinic. Following these failures many new model systems have been developed, both in vitro and in vivo, that provide improved understanding of the causes for clinical trial failures. Amongst these are in vitro rate-of-kill (RoK) assays that reveal how fast compounds kill intracellular parasites. Such assays have shown clear distinctions between the compounds that failed in clinical trials and the standard of care. However, the published RoK assays have some key drawbacks, including low time-resolution and inability to track the same cell population over time. Here, we present a new, live-imaging RoK assay for intracellular T. cruzi that overcomes these issues. We show that the assay is highly reproducible and report high time-resolution RoK data for key clinical compounds as well as new chemical entities. The data generated by this assay allow fast acting compounds to be prioritised for progression, the fate of individual parasites to be tracked, shifts of mode-of-action within series to be monitored, better PKPD modelling and selection of suitable partners for combination therapy.  相似文献   
354.
The association of taste genetics and the oral microbiome in autoimmune diseases such as rheumatoid arthritis (RA) has not been reported. We explored a novel oral mucosal innate immune pathway involving the bitter taste G protein-coupled receptor T2R38. This case–control study aimed to evaluate whether T2R38 polymorphisms associate with the buccal microbial composition in RA. Genomic DNA was obtained from buccal swabs of 35 RA patients and 64 non-RA controls. TAS2R38 genotypes were determined by Sanger sequencing. The buccal microbiome was assessed by Illumina MiSeq sequencing of the V4-16S rRNA gene. Bacterial community differences were analyzed with alpha and beta diversity measures. Linear discriminant analysis effect size identified taxa discriminating between RA versus non-RA and across TAS2R38 genotypes. TAS2R38 genotype frequency was similar between RA and non-RA controls (PAV/PAV; PAV/AVI; AVI/AVI: RA 42.9%; 45.7%; 11.4% versus controls 32.8%; 48.4%; 18.8%, chi-square (2, N = 99) = 2.1, p = 0.35). The relative abundance of Porphyromonas, among others, differed between RA and non-RA controls. The relative abundance of several bacterial species also differed across TAS2R38 genotypes. These findings suggest an association between T2R38 polymorphisms and RA buccal microbial composition. However, further research is needed to understand the impact of T2R38 in oral health and RA development.  相似文献   
355.
An original simple method for evaluating the tissue/blood distribution coefficient for physiological models of drug pharmacokinetics on the basis of minimal information on the content of a xenobiotic in tissues (one time point) is described. For its testing, the literature data on the pharmacokinetics of sulbactam, ampicillin, THR-221 and NY-198 were used.  相似文献   
356.
This study examines how fragmentation through changes in patch size and increasing distances between forest patches affects bird species richness. Numbers of bird species were higher in large forest patches and decrease with decreasing patch size. Bird species richness also decreased with increased isolation of forest patches. Suitable trees should be planted in the gaps between the forests that will create wildlife corridors to maintain connectivity.  相似文献   
357.
358.
359.
Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220. The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.  相似文献   
360.
Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis, and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as clear bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 h to 10 min, incubation assay time from overnight to 4 h, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by Smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号