首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   31篇
  2023年   3篇
  2022年   5篇
  2021年   18篇
  2020年   3篇
  2019年   8篇
  2018年   24篇
  2017年   4篇
  2016年   17篇
  2015年   24篇
  2014年   26篇
  2013年   30篇
  2012年   30篇
  2011年   30篇
  2010年   15篇
  2009年   12篇
  2008年   17篇
  2007年   17篇
  2006年   18篇
  2005年   12篇
  2004年   18篇
  2003年   8篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有383条查询结果,搜索用时 31 毫秒
341.

Background

Cerebrospinal fluid (CSF) biomarkers reflect ongoing processes in the brain. Growth-associated protein 43 (GAP-43) is highly upregulated in brain tissue shortly after experimental ischemia suggesting the CSF GAP-43 concentration may be altered in ischemic brain disorders. CSF GAP-43 concentration is elevated in Alzheimer’s disease patients; however, patients suffering from stroke have not been studied previously.

Methods

The concentration of GAP-43 was measured in longitudinal CSF samples from 28 stroke patients prospectively collected on days 0–1, 2–4, 7–9, 3?weeks, and 3–5?months after ischemia and cross-sectionally in 19 controls. The stroke patients were clinically evaluated using a stroke severity score system. The extent of the brain lesion, including injury size and degrees of white matter lesions and atrophy were evaluated by CT and magnetic resonance imaging.

Results

Increased GAP-43 concentration was detected from day 7–9 to 3?weeks after stroke, compared to day 1–4 and to levels in the control group (P?=?0.02 and P?=?0.007). At 3–5?months after stroke GAP-43 returned to admission levels. The initial increase in GAP-43 during the nine first days was associated to stroke severity, the degree of white matter lesions and atrophy and correlated positively with infarct size (rs?=?0.65, P?=?0.001).

Conclusions

The transient increase of CSF GAP-43 is important to take into account when used as a biomarker for other neurodegenerative diseases such as Alzheimer’s disease. Furthermore, GAP-43 may be a marker of neuronal responses after stroke and additional studies confirming the potential of CSF GAP-43 to reflect severity and outcome of stroke in larger cohorts are warranted.
  相似文献   
342.
343.
The objective of this study was to evaluate the cytotoxicity of (+)-cyanidan-3-ol (CD-3) in human hepatocellular carcinoma cell line (HepG2) and chemopreventive potential against hepatocellular carcinoma (HCC) in Balb/c mice. The HepG2 cell line was treated with CD-3 at various concentrations and the proliferation of the HepG2 cells was measure by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT), sulforhodamine B (SRB) and lactate dehydrogenase (LDH) assays. Cell apoptosis was detected by Hoechst 33258 (HO), Acridine orange/ethylene dibromide (AO/EB) staining, DNA fragmentation analysis and the apoptosis rate was detected by flow cytometry. The HCC tumor model was established in mice by injecting N-nitrosodiethylamine/carbon tetrachloride (NDEA/CCl4) and the effect of CD-3 on tumor growth in-vivo was studied. The levels of liver injury markers, tumor markers, and oxidative stress were measured. The expression levels of apoptosis-related genes in in-vitro and in vivo models were determined by RT-PCR and ELISA. The CD-3 induced cell death was considered to be apoptotic by observing the typical apoptotic morphological changes under fluorescent microscopy and DNA fragmentation analysis. Annexin V/PI assay demonstrated that apoptosis increased with increase in the concentration of CD-3. The expression levels of apoptosis-related genes that belong to bcl-2 and caspase family were increased and AP-1 and NF-κB activities were significantly suppressed by CD-3. Immunohistochemistry data revealed less localization of p53, p65 and c-jun in CD-3 treated tumors as compared to localization in NDEA/CCl4 treated tumors. Taken together, our data demonstrated that CD-3 could significantly inhibit the proliferation of HepG2 cells in-vitro and suppress HCC tumor growth in-vivo by apoptosis induction.  相似文献   
344.
345.
346.
Voltage-gated sodium channels (NaVs) are membrane proteins responsible for the rapid upstroke of the action potential in excitable cells. There are nine human voltage-sensitive NaV1 isoforms that, in addition to their sequence differences, differ in tissue distribution and specific function. This review focuses on isoforms NaV1.4 and NaV1.5, which are primarily expressed in skeletal and cardiac muscle cells, respectively. The determination of the structures of several eukaryotic NaVs by single-particle cryo-electron microscopy (cryo-EM) has brought new perspective to the study of the channels. Alignment of the cryo-EM structure of the transmembrane channel pore with x-ray crystallographic structures of the cytoplasmic domains illustrates the complementary nature of the techniques and highlights the intricate cellular mechanisms that modulate these channels. Here, we review structural insights into the cytoplasmic C-terminal regulation of NaV1.4 and NaV1.5 with special attention to Ca2+ sensing by calmodulin, implications for disease, and putative channel dimerization.  相似文献   
347.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   
348.
349.
350.
Many diseases heal spontaneously. The common cold, for example, remedies itself within a few days in people with an uncompromised immune system. If a disease with a poor prognosis heals in the absence of a targeted therapeutic, many even call it a miracle cure. Such is the case with the spontaneous regression (SR) of malignant neoplasms, a rare but well-documented phenomenon that finds its first mention in the Ebers Papyrus of 1550 BCE. Given the challenges associated with current cancer treatment modalities such as rapidly evolving drug resistance mechanisms, dose-limiting side effects, and a failure to completely eliminate cancer cells, knowledge of how a tumour heals itself would be immensely helpful in developing more effective therapeutic modalities. Although the intricate mechanisms of SR have yet to be fully elucidated, it has been shown that infection-mediated immune system activation, biopsy procedures, and disruptions of the tumour microenvironment play pivotal roles in the self-healing of many tumours. Bacterial and viral infections are especially well-documented in instances of SR. Insights from these findings are paving the way for novel therapeutic strategies. Inspired by bacteria-mediated SR, Bacillus Calmette-Guérin (BCG) has been used as an approved treatment option for non-muscle-invasive bladder cancer (NMIBC). Similarly, Talimogene laherparepvec (T-VEC), the first engineered oncolytic herpes simplex virus (HSV), has been approved by the United States Food and Drug Administration for the treatment of some forms of advanced melanoma. Here we describe the current understanding of SR, explore its therapeutic significance, and offer perspectives on its future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号