首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12041篇
  免费   904篇
  国内免费   358篇
  2024年   17篇
  2023年   90篇
  2022年   155篇
  2021年   381篇
  2020年   289篇
  2019年   351篇
  2018年   402篇
  2017年   318篇
  2016年   423篇
  2015年   679篇
  2014年   790篇
  2013年   861篇
  2012年   1079篇
  2011年   1019篇
  2010年   644篇
  2009年   541篇
  2008年   728篇
  2007年   648篇
  2006年   534篇
  2005年   490篇
  2004年   508篇
  2003年   396篇
  2002年   316篇
  2001年   255篇
  2000年   211篇
  1999年   208篇
  1998年   95篇
  1997年   64篇
  1996年   55篇
  1995年   62篇
  1994年   59篇
  1993年   44篇
  1992年   81篇
  1991年   75篇
  1990年   55篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   25篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   20篇
  1979年   19篇
  1978年   12篇
  1977年   19篇
  1975年   14篇
  1974年   16篇
  1970年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
162.
Low electron/proton conductivities of electrochemical catalysts, especially earth‐abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple‐phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (≈0.1 mg cm?2) augments reaction sites from 1D to 2D, resulting in an 18‐fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar‐electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity‐determining and Debye‐length‐determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high‐efficiency electrochemical energy conversion devices.  相似文献   
163.
164.
165.
Lithium–sulfur batteries (LSBs) are considered promising candidates for the next‐generation energy‐storage systems due to their high theoretical capacity and prevalent abundance of sulfur. Their reversible operation, however, encounters challenges from both the anode, where dendritic and dead Li‐metal form, and the cathode, where polysulfides dissolve and become parasitic shuttles. Both issues arise from the imperfection of interphases between electrolyte and electrode. Herein, a new lithium salt based on an imide anion with fluorination and unsaturation in its structure is reported, whose interphasial chemistries resolve these issues simultaneously. Lithium 1, 1, 2, 2, 3, 3‐hexafluoropropane‐1, 3‐disulfonimide (LiHFDF) forms highly fluorinated interphases at both anode and cathode surfaces, which effectively suppress formation of Li‐dendrites and dissolution/shuttling of polysulfides, and significantly improves the electrochemical reversibility of LSBs. In a broader context, this new Li salt offers a new perspective for diversified beyond Li‐ion chemistries that rely on a Li‐metal anode and active cathode materials.  相似文献   
166.
天然多糖水凝胶具有良好的生物相容性,然而其力学性能调节幅度小,无法满足组织工程应用巨大的需求。通过纤维增强法,不仅可显著提高天然多糖水凝胶的力学性能,还能调节复合水凝胶的降解性能、促进细胞粘附、增殖与分化行为及其组织沉积。常用的天然多糖组织工程水凝胶的纤维增强方法有物理共混法、化学作用法、静电驱动法与自组装法等。本文综述了纤维增强水凝胶的结构与功能特点,讨论了纤维增强对组织工程水凝胶的意义,以期对纤维增强组织工程水凝胶的发展起到促进作用。  相似文献   
167.
Hu  Yongfeng  Kang  Ying  Liu  Xi  Cheng  Min  Dong  Jie  Sun  Lilian  Zhu  Yafang  Ren  Xianwen  Yang  Qianting  Chen  Xinchun  Jin  Qi  Yang  Fan 《中国科学:生命科学英文版》2020,63(10):1522-1533
An improved understanding of the lung microbiome may lead to better strategies to diagnose, treat, and prevent pulmonary tuberculosis(PTB). However, the characteristics of the lung microbiomes of patients with TB remain largely undefined. In this study, 163 bronchoalveolar lavage(BAL) samples were collected from 163 sputum-negative suspected PTB patients. Furthermore, 12 paired BAL samples were obtained from 12 Mycobacterium tuberculosis-positive(MTB+) patients before and after negative conversion following a two-month anti-TB treatment. The V3–V4 region of the 16 S ribosomal RNA(rRNA) gene was used to characterize the microbial composition of the lungs. The results showed that the prevalence of MTB in the BAL samples was 42.9%(70/163) among the sputum-negative patients. The α-diversity of lung microbiota was significantly less diverse in MTB+ patients compared with Mycobacterium tuberculosis-negative(MTB–) patients. There was a significant difference in β-diversity between MTB+ and MTB– patients. MTB+ patients were enriched with Anoxybacillus, while MTB– patients were enriched with Prevotella, Alloprevotella, Veillonella, and Gemella. There was no significant difference between the Anoxybacillus detection rates of MTB+ and MTB– patients. The paired comparison between the BAL samples from MTB+ patients and their negative conversion showed that BAL negative-conversion microbiota had a higher α-diversity. In conclusion, distinct features of airway microbiota could be identified between samples from patients with and without MTB. Our results imply links between lung microbiota and different clinical groups of active PTB.  相似文献   
168.
Gao  Feng  Zhao  Shanshan  Men  Shuzhen  Kang  Zhensheng  Hong  Jian  Wei  Chunhong  Hong  Wei  Li  Yi 《中国科学:生命科学英文版》2020,63(11):1703-1713

RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.

  相似文献   
169.
We carried out DNA barcoding on 24 Korean tettigonid species of 19 genera deposited in the National Institute of Biological Resources to reevaluate the preliminary identification of each specimen. Sequence divergence of DNA barcodes obtained from 113 samples of the 24 species ranged from 0 to 30.4%, the intraspecific variation was 0–7.3%, and the interspecific divergence was 1.1–30.4%; we could not examine the barcoding gap. In the neighbor‐joining tree, the branch length among individuals of Tettigonia ussuriana, Paratlanticus ussuriensis, and Hexacentrus japonicus were relatively longer than those in other species. The detailed analysis of the morphological characters and DNA barcodes of the above three species revealed that these three species represent species complexes. The T. ussuriana complex comprised T. jungi, T. uvarovi, and T. ussuriana. Paratlanticus ussuriensis cluster contained four species; one cluster was identified as P. palgongensis based on morphological characteristics, but the other three clusters, including the P. ussuriensis cluster, require further detailed taxonomic analysis. Lastly, two species clusters were identified within the Hexacentrus japonicus clade. Based on the 99% sequence similarity obtained by blast search of the NCBI GenBank database, one of the clusters was identified as H. unicolor. Thus, the DNA barcoding revealed the presence of at least three cryptic species in Korean Tettigoniidae, although more detailed taxonomic analyses are required to establish their status. Therefore, we suggest that DNA barcoding is a very useful tool for increasing the identification accuracy of insect collections.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号