首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10384篇
  免费   933篇
  国内免费   1526篇
  2024年   25篇
  2023年   149篇
  2022年   207篇
  2021年   553篇
  2020年   394篇
  2019年   507篇
  2018年   501篇
  2017年   367篇
  2016年   457篇
  2015年   742篇
  2014年   808篇
  2013年   798篇
  2012年   1032篇
  2011年   930篇
  2010年   606篇
  2009年   558篇
  2008年   628篇
  2007年   574篇
  2006年   489篇
  2005年   429篇
  2004年   375篇
  2003年   317篇
  2002年   259篇
  2001年   119篇
  2000年   137篇
  1999年   124篇
  1998年   84篇
  1997年   99篇
  1996年   73篇
  1995年   56篇
  1994年   48篇
  1993年   31篇
  1992年   37篇
  1991年   28篇
  1990年   33篇
  1989年   30篇
  1988年   34篇
  1987年   24篇
  1986年   16篇
  1985年   19篇
  1984年   21篇
  1983年   13篇
  1982年   22篇
  1981年   9篇
  1980年   7篇
  1979年   11篇
  1978年   7篇
  1976年   9篇
  1974年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
目的:研究布地奈德福莫特罗粉吸入剂(ST)联合孟鲁斯特对支气管哮喘急性发作期(ASBA)患者肺功能及血清细胞因子水平的影响。方法:选择2015年2月到2017年8月在我院治疗的86例ASBA患者作为研究对象,根据随机数字表法将患者分成观察组(n=43)以及对照组(n=43),对照组予以ST治疗,观察组则在此基础上联合孟鲁司特治疗,两组均治疗3个月,对比两组患者治疗前及治疗3个月后的肺功能、细胞因子水平、咳嗽评分、St·George's呼吸疾病问卷(SGRQ)以及用药安全性。结果:治疗后两组患者的第1秒的用力呼气容积(FEV1)、用力肺活量(FVC)及FEV1/FVC均较治疗前升高,且观察组高于对照组(P0.05)。治疗后两组患者的白细胞介素-4(IL-4)、白细胞介素-5(IL-5)、γ-干扰素(INF-γ)及肿瘤坏死因子-α(TNF-α)水平均较治疗前降低,且观察组低于对照组(P0.05)。治疗后两组患者的咳嗽评分较治疗前升高,且观察组高于对照组(P0.05),而治疗后两组患者的SGRQ评分均较治疗前降低,且观察组低于对照组(P0.05)。观察组不良反应的总发生率为20.93%,与对照组的16.28%相比无统计学差异(P0.05)。结论:ASBA给予ST联合孟鲁司特治疗能够有效改善患者的症状,缓解机体炎症反映的同时还可有效改善患者肺功能和生活质量,其用药安全性较好。  相似文献   
142.
水椰八角铁甲Octodonta nipae(Maulik)是一种严重为害棕榈科植物的外来入侵害虫。为了明确日龄和性别等个体因素对水椰八角铁甲成虫表皮碳氢化合物的影响,本研究采用化学萃取法和气相色谱-质谱联用技术,分析了不同日龄的水椰八角铁甲雌、雄成虫表皮碳氢化合物的组成和含量。结果表明,水椰八角铁甲成虫的表皮碳氢化合物由21种C_(18)-C_(30)的碳氢化合物构成,包括11种正构烷烃、2种单甲基烷烃、1种多甲基烷烃、3种正构烯烃、1种单甲基烯烃和3种环烷烃。不同日龄和性别成虫的表皮碳氢化合物的组成种类相同,但是一些组分的含量有明显变化,例如1 d、5 d、10 d和15 d雌、雄成虫之间正二十四烷、正二十六烷、2-甲基十九烷和1-二十烯的含量存在显著差异。水椰八角铁甲成虫表皮碳氢化合物具有性二型,如性成熟雄虫的表皮的正二十烷、正二十一烷、正二十四烷、正二十六烷、2-甲基十九烷、10-甲基二十烷、1-二十烯和1-二十二烯的含量显著高于性成熟雌虫。本文的研究结果可为检验检疫过程中水椰八角铁甲近缘种,以及日龄、性别和性成熟的快速鉴定提供支持。  相似文献   
143.
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.  相似文献   
144.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   
145.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   
146.
Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.  相似文献   
147.
Phosphorus is a macronutrient that is essential for plant survival. Most land plants have evolved the ability to form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which enhances phosphate (Pi) acquisition. Modulation of Pi transporter systems is the master strategy used by mycorrhizal plants to adapt to ambient Pi concentrations. However, the specific functions of PHOSPHATE TRANSPORTER 1 (PHT1) genes, which are Pi transporters that are responsive to high Pi availability, are largely unknown. Here, we report that AsPT5, an Astragalus sinicus (Chinese milk vetch) member of the PHT1 gene family, is conserved across dicotyledons and is constitutively expressed in a broad range of tissues independently of Pi supply, but is remarkably induced by indole-3-acetic acid (auxin) treatment under moderately high Pi conditions. Subcellular localization experiments indicated that AsPT5 localizes to the plasma membrane of plant cells. Using reverse genetics, we showed that AsPT5 not only mediates Pi transport and remodels root system architecture but is also essential for arbuscule formation in A. sinicus under moderately high Pi concentrations. Overall, our study provides insight into the function of AsPT5 in Pi transport, AM development and the cross-talk between Pi nutrition and auxin signalling in mycorrhizal plants.  相似文献   
148.
To establish systemic infections, Salmonella enterica serovar Typhimurium (S. Typhimurium) requires Salmonella pathogenicity island 2 (SPI‐2) to survive and replicate within macrophages. High expression of many SPI‐2 genes during the entire intracellular growth period within macrophages is essential, as it contributes to the formation of Salmonella‐containing vacuole and bacterial replication. However, the regulatory mechanisms underlying the sustained induction of SPI‐2 within macrophages are not fully understood. Here, we revealed a time‐dependent regulation of SPI‐2 expression mediated by a novel regulator PagR (STM2345) in response to the low Mg2+ and low phosphate (Pi) signals, which ensured the high induction of SPI‐2 during the entire intramacrophage growth period. Deletion of pagR results in reduced bacterial replication in macrophages and attenuation of systemic virulence in mice. The effects of pagR on virulence are dependent on upregulating the expression of slyA, a regulator of SPI‐2. At the early (0–4 hr) and later (after 4 hr) stage post‐infection of macrophages, pagR is induced by the low Pi via PhoB/R two‐component systems and low Mg2+ via PhoP/Q systems, respectively. Collectively, our findings revealed that the PagR‐mediated regulatory mechanism contributes to the precise and sustained activation of SPI‐2 genes within macrophages, which is essential for S. Typhimurium systemic virulence.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号