首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   19篇
  2023年   3篇
  2022年   8篇
  2021年   21篇
  2020年   10篇
  2019年   14篇
  2018年   16篇
  2017年   12篇
  2016年   15篇
  2015年   18篇
  2014年   34篇
  2013年   39篇
  2012年   45篇
  2011年   37篇
  2010年   18篇
  2009年   11篇
  2008年   12篇
  2007年   14篇
  2006年   10篇
  2005年   11篇
  2004年   11篇
  2003年   10篇
  2002年   11篇
  2000年   1篇
  1994年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有384条查询结果,搜索用时 62 毫秒
61.

Background

In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood.

Methodology/Principal Findings

We established a novel and simple behavioral assay using pairs of small fish (medaka and dwarf pufferfish) by eliciting a simultaneous optomotor response (OMR). We demonstrated that two homospecific fish began to move cohesively and maintained a distance of 2 to 4 cm between them when an OMR was elicited simultaneously in the fish. The coordinated and cohesive movement was not exhibited under a static condition. During the cohesive movement, the relative position of the two fish was not stable. Furthermore, adult medaka exhibited the cohesive movement but larvae did not, despite the fact that an OMR could be elicited in larvae, indicating that this ability to coordinate movement develops during maturation. The cohesive movement was detected in homospecific pairs irrespective of body-color, sex, or albino mutation, but was not detected between heterospecific pairs, suggesting that coordinated movement is based on a conspecific interaction.

Conclusions/Significance

Our findings demonstrate that coordinated behavior between a pair of animals was elicited by a simultaneous OMR in two small fish. This is the first report to demonstrate induction of a schooling-like movement in a pair of fish by an OMR and to investigate the effect of age, sex, body color, and species on coordination between animals under a dynamic condition.  相似文献   
62.
63.
Behavior of adult Parahucho perryi was examined using bio-logging and acoustic telemetry concurrently in the Bekanbeushi River system, eastern Hokkaido, Japan, in 2009 and 2010. Based on 46.1–87.9 h data from five P. perryi (69.0–80.0 cm fork length) caught from Lake Akkeshi, they used upstream (n = 2), midstream (n = 3), and downstream (n = 4) habitats. Large variability in diel activity and depth occupation existed in each stream habitat; however, fish in the downstream habitat tended to be more active than those in the upper habitats and mainly occupied shallower depths than mean bottom depth in this habitat.  相似文献   
64.
65.
66.
The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the tobacco dicistronic mRNA, and that the efficiency of atpB translation is higher than that of atpE translation. When the atpB 5′-UTR was replaced with lower efficiency 5′-UTRs, atpE translation was higher than atpB translation. Removal of the entire atpB 5′-UTR arrested atpB translation but atpE translation still proceeded. Introduction of a premature stop codon in the atpB cistron did not abolish atpE translation. These results indicate that atpE translation is independent of atpB translation. Mutation analysis showed that the atpE cistron possesses its own cis-element(s) for translation, located ~25 nt upstream from the start codon.  相似文献   
67.
To ascertain the effect of exogenously applied hydrogen peroxide (H2O2) on drought stress, we examined whether the spraying of soybean leaves with H2O2 would alleviate the symptoms of drought stress. Pre-treatment by spraying leaves with H2O2 delayed foliar wilting caused by drought stress compared to leaves sprayed with distilled water (DW). Additionally, the relative water content of drought-stressed leaves pre-treated with H2O2 was higher than that of leaves pre-treated with DW. Therefore, we analyzed the effect of H2O2 spraying on photosynthetic parameters and on the biosynthesis of oligosaccharides related to water retention in leaves during drought stress. Under conditions of drought stress, the net photosynthetic rate and stomatal conductance of leaves pre-treated with H2O2 were higher than those of leaves pre-treated with DW. In contrast to DW spraying, H2O2 spraying immediately caused an increase in the mRNA levels of d-myo-inositol 3-phosphate synthase 2 (GmMIPS2) and galactinol synthase (GolS), which encode key enzymes for the biosynthesis of oligosaccharides known to help plants tolerate drought stress. In addition, the levels of myo-inositol and galactinol were higher in H2O2-treated leaves than in DW-treated leaves. These results indicated that H2O2 spraying enabled the soybean plant to avoid drought stress through the maintenance of leaf water content, and that this water retention was caused by the promotion of oligosaccharide biosynthesis rather than by rapid stomatal closure.  相似文献   
68.
69.
In our previous study, fluoride ([AlF(4) ](-) ) disturbed ER-to-Golgi transport through the activation of ER-resident heterotrimeric G protein (ER-G protein). Therefore, ER-G protein may be implicated in ER-to-Golgi transport at the early stage prior to coat protein assembly. Sar1 translocation onto the endoplasmic reticulum (ER) membrane is suppressed by non-selective protein kinase inhibitor H89, suggesting the participation of H89-sensitive kinase in this process. To investigate the involvement of ER-G protein in ER-to-Golgi transport, the effect of G(i) protein activator (mastoparan 7) was examined on Sar1 translocation onto the ER in a cell-free system consisting of microsome membrane and cytosol. Sar1 translocation onto the microsome membrane was induced by addition of GTPγS in the cell-free system. Translocation of Sar1 by GTPγS was suppressed significantly by both H89 and mastoparan 7. Mastoparan 7 suppressed the translocation of Sar1 onto the microsome membrane with dosage dependency, but mastoparan 17, the inactive analog of mastoparan 7, had no effect on Sar1 translocation. The suppressive effect of mastoparan 7 was recovered by treatment with pertussis toxin (IAP). Moreover, G(i2) protein was detected on the microsome membrane by western blotting for heterotrimeric G(i) proteins. These results indicate that ER-G(i2) protein modulated Sar1 translocation onto the ER, suggesting that ER-resident G(i2) protein is an important negative regulator of vesicular transport at the early stage of vesicle formation before coat protein assembly on the ER.  相似文献   
70.
Increased expression of miR-128a is often observed in acute lymphoblastic leukaemia (ALL) compared with its expression in acute myeloid leukaemia (AML). The objective of this study was to investigate the role of miR-128a, especially that in the Fas-signalling pathway, in T-cell leukaemia cells. The role of miR-128a in Fas-mediated apoptosis was examined by using Fas-activating antibody (CH-11)-susceptible Jurkat cells and -resistant Jurkat/R cells. Whereas ectopic expression of miR-128a conferred Fas-resistance on Jurkat cells by directly targeting Fas-associated protein with death domain (FADD), antagonizing miR-128a expression sensitized Jurkat/R cells to the Fas-mediated apoptosis through derepression of FADD expression. Myeloid leukaemia HL60 and K562 cells were also CH-11-resistant, sharing a similar resistant mechanism with Jurkat/R cells. Furthermore, CH-11 induced demethylation of the promoter region of miR-128a with resultant up-regulation of miR-128a expression in Jurkat/R cells, which was shown to be a mechanism for the resistance of Jurkat/R cells to Fas-mediated apoptosis. Our results indicate that the induction of miR-128a expression by DNA demethylation is a novel mechanism of resistance to Fas-mediated apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号