首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   9篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1986年   9篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有125条查询结果,搜索用时 297 毫秒
21.
In freeze-cleaved replicas of plasma membrane, fenestrations appear as papillae on the E face and as craters on the P face. In replicas of intracellular membranes, the appearance of fenestrae is reversed. This can be used as a marker for identification of the two faces of the cleaved membrane particularly in isolated fenestrated membranes.  相似文献   
22.
Eighteen commercially available antibodies reactive against different cytokeratin proteins were tested on classic examples of lobular intraepithelial neoplasia (LIN) and of ductal intraepithelial neoplasia (DIN) of the breast. About 90% of higher-grade DIN (AIDH and DCIS) show no or substantially diminished reaction with clone 34betaE12 (specified as reactive against keratins 1, 5, 10, and 14 as determined by the manufacturer), while the cells of LIN were found to express the antigen reactive with this antibody. To determine which of these four keratins are present in the cells of LIN, antibodies reactive against these individual four keratins were tested. None of the four antibodies to keratins 1, 5, 10, or 14 reacted with the cells of LIN. To investigate this further, 13 additional monoclonal antibodies to various other keratin proteins were tested on the cells of LIN. Those that successfully reacted with the cells of LIN were further tested on the cells of DIN. All of the individual antibodies reactive with the cells of LIN were also reactive with the cells of DIN to a degree, with clone RCK108 (reactive against keratin 19) coming the closest to demonstrating the reactivity seen with 34betaE12. We conclude that the reactivity seen in the cells of LIN with 34betaE12 is due to either (a) a crossreaction with keratin 19 that is slightly less prominent than the reaction of the individual clone RCK108, (b) a crossreaction with a keratin protein that was not tested (3, 11, 12), (c) a crossreaction with a protein closely resembling keratin in formalin-fixed, paraffin-embedded tissue, or (d) the detection of a mutated or truncated form of keratin 1, 5, 10, or 14 that cannot be detected by the individual monoclonal antibody.  相似文献   
23.
Freeze-fracture and thin-section electron microscopy indicate that a sequence of fusion-fission leads to reorganization of membranes and the demarcation of platelets within the cytoplasm of megakaryocyte. Invagination of the megakaryocyte plasma membrane leads to the formation of tubular structures within the cytoplasm of megakaryocytes. Fusion of these tubular membranes in the plane of their long axes is followed by fission in the perpendicular plane. This results in the formation of two flat membranes, forming plasma membranes of two adjacent platelets. A similar fusion-fission reorganization of membranes could mediate a wide variety of other biologic phenomena. These observations also indicate that megakaryocytes are located in the subendothelial compartment of the marrow with their projections penetrating the endothelium and reaching the lumen. This direct contact with the circulation may serve as a means of receiving information as to the requirements of the body for platelet production.  相似文献   
24.
Selective seeding of bone marrow by intravenously transplanted hemopoietic cells depends on the homing receptors of these cells. The receptors are membrane lectins with galactosyl and mannosyl specificities. To purify these lectins, cell membrane was fractionated from two cloned multipotential (B6STU) and bipotential (FDCP-1) hemopoietic progenitor cells. The membrane was solubilized and its proteins were labeled with 125I. The proteins were subjected to affinity column chromatography using galactosyl and mannosyl groups linked to agarose beads. Elution with D-galactose or D-mannose led to specific elution of a single sharp radioactive peak which constituted a constant fraction of membrane proteins. This peak was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by disuccinimidyl suberate cross-linking technique and appeared to have a Mr of 110,000. Under reducing conditions, it consisted of two components with a Mr of 87,000 and 23,000. Treatment with endoglycosidase F indicated about 5% carbohydrate content. Purification of these homing receptors has opened an avenue for the development of immunologic and molecular biologic probes that may help further elucidate the mechanism of homing regulation.  相似文献   
25.
26.
We report an inhibitor of the homodimeric protein-protein interaction of the BCL6 oncoprotein, identified from a genetically encoded SICLOPPS library of 3.2 million cyclic hexapeptides in combination with a bacterial reverse two-hybrid system. This cyclic peptide is shown to bind the BTB domain of BCL6, disrupts its homodimerization, and subsequent binding of the SMRT2 corepressor peptide.  相似文献   
27.
28.
Consolida (dc .) S. F. Gray belongs to Ranunculaceae. The genus includes about 52 species worldwide. Here we report the diploid chromosome number and chromosome size and morphology for six Consolida species. For C. anthoroidea, C. leptocarpa, C. paradoxa and C. rugulosa the diploid chromosome number is reported for the first time. All investigated species have a diploid chromosome number of 2n = 2x = 16, except for C. persica having 2n = 2x = 14. The karyotypes of all six taxa are asymmetric, consisting of all four major chromosome types: metacentric, submetacentric, subtelocentric and telocentric chromosome type. However, considering the karyotype formula, all six species could be distinguished. In all taxa, metacentric chromosome pair 1 possesses a satellite. The only exception is C. rugulosa having an additional satellite positioned on metacentric chromosome pair 2. Karyotype data allow the separation of Aconitella from Consolida. Karyotype data plus morphological evidence support the reduction of C. paradoxa to formae level of C. rugulosa. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
29.
Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis.  相似文献   
30.
Human papillomavirus (HPV) is causative for a new and increasing form of head and neck squamous cell carcinomas (HNSCCs). Although localised HPV-positive cancers have a favourable response to radio-chemotherapy (RT/CT), the impact of HPV in advanced or metastatic HNSCC remains to be defined and targeted therapeutics need to be tested for cancers resistant to RT/CT. To this end, we investigated the sensitivity of HPV-positive and -negative HNSCC cell lines to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), which induces tumour cell-specific apoptosis in various cancer types. A clear correlation was observed between HPV positivity and resistance to TRAIL compared with HPV-negative head and neck cancer cell lines. All TRAIL-resistant HPV-positive cell lines tested were sensitised to TRAIL-induced cell death by treatment with bortezomib, a clinically approved proteasome inhibitor. Bortezomib-mediated sensitisation to TRAIL was associated with enhanced activation of caspase-8, -9 and -3, elevated membrane expression levels of TRAIL-R2, cytochrome c release and G2/M arrest. Knockdown of caspase-8 significantly blocked cell death induced by the combination therapy, whereas the BH3-only protein Bid was not required for induction of apoptosis. XIAP depletion increased the sensitivity of both HPV-positive and -negative cells to TRAIL alone or in combination with bortezomib. In contrast, restoration of p53 following E6 knockdown in HPV-positive cells had no effect on their sensitivity to either single or combination therapy, suggesting a p53-independent pathway for the observed response. In summary, bortezomib-mediated proteasome inhibition sensitises previously resistant HPV-positive HNSCC cells to TRAIL-induced cell death through a mechanism involving both the extrinsic and intrinsic pathways of apoptosis. The cooperative effect of these two targeted anticancer agents therefore represents a promising treatment strategy for RT/CT-resistant HPV-associated head and neck cancers.Head and neck squamous cell carcinoma (HNSCC) represents the sixth most common cancer worldwide.1 While the overall incidence of HNSCC, traditionally associated with tobacco or alcohol consumption, is declining, a subset of oropharyngeal cancers caused by infection with high-risk types of human papillomavirus (HPV) has risen significantly.2,3 Transformation upon HPV infection occurs mainly because of inactivation of the p53 and retinoblastoma tumour suppressor proteins mediated by the viral oncoproteins E6 and E7, respectively.4HPV-positive (HPV+) cancers represent a distinct subset of HNSCC in terms of biology and clinical behaviour. In general, they are characterised by better overall survival and an improved response to conventional radio-chemotherapy (RT/CT) compared with HPV-negative (HPV) cancers.5,6 To further minimise treatment-related toxicity without compromising outcome, there have been suggestions of treatment de-escalation in conjunction with targeted therapies.7The novel anticancer agent TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) selectively kills several types of malignant cell lines with little effect on normal cells.8 Recombinant TRAIL or monoclonal antibodies targeting TRAIL receptors (TRAIL-Rs) are currently being tested in phase I/II clinical trials for patients with advanced tumours.9,10 TRAIL induces cell death by binding to TRAIL-R1 or TRAIL-R2, resulting in receptor oligomerisation and formation of the death-inducing signalling complex (DISC)11 and activation of initiator caspase-8.12 Caspase-8 directly activates effector caspase-3 to induce apoptosis through the type I pathway or cleaves the BH3-only protein Bid, generating tBid. This type II pathway involves an amplification loop through the intrinsic pathway of apoptosis characterised by cytochrome c release from the mitochondria, activation of initiator caspase-9 and ultimately caspase-3.13Despite its tumour-selective activity, various cancer cell lines remain resistant to TRAIL, limiting the clinical potential of TRAIL-based monotherapies. Many recent studies focus on combination strategies with other agents to sensitise resistant cells to TRAIL.14 The proteasome inhibitor bortezomib is an FDA-approved drug for the treatment of multiple myeloma, but has shown only little single-agent activity in solid malignancies such as HNSCC while being effective in combination with other treatment options.15, 16, 17 Combining bortezomib with TRAIL-R agonists produced a synergistic cytotoxic effect in various types of cancers. Potential mechanisms underlying sensitisation to TRAIL-induced apoptosis include inhibition of NF-κB signalling, stabilisation of BH3-only proteins, p53 or p21, upregulation of TRAIL-Rs and enhanced stability of caspase-8.18, 19, 20, 21, 22, 23, 24, 25, 26So far, little data is available on the therapeutic potential of TRAIL alone or in combination with bortezomib in HNSCC or other HPV+ related cancers. Treatment with the proteasome inhibitor MG132 sensitised TRAIL-resistant HPV+ cervical cancer cells to TRAIL through p53-dependent upregulation of TRAIL-Rs and inactivation of XIAP.27 Overexpression of E6 was shown to protect colon cancer cells from death receptor-induced apoptosis by affecting the stability of the DISC, indicating a functional link between the presence of E6 and TRAIL signalling.28In this study, we tested the response of HPV+ and HPV HNSCC cells to treatment with TRAIL alone or combined with bortezomib, revealing a clear pattern of sensitivity to TRAIL depending on HPV status and a synergistic effect when combined with bortezomib. In addition, we identified some of the proteins and pathways involved in the response to TRAIL/bortezomib in HNSCCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号