首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   17篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   9篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   12篇
  2005年   7篇
  2004年   7篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
51.
The pericentric inv(10)(p11.2q21.2) mutation has been frequently identified in cytogenetic laboratories, is phenotypically silent, and is considered to be a polymorphic variant. Cloning and sequencing of the junction fragments on 10p11 and 10q21 revealed that neither inversion breakpoint directly involved any genes or repetitive sequences, although both breakpoint regions contain a number of repeats. All 20 apparently unrelated inv(10) families in our study had identical breakpoints, and detailed haplotype analysis showed that the inversions were identical by descent. Thus, although considered a common variant, inv(10)(p11.2q21.2) has a single ancestral founder among northern Europeans.  相似文献   
52.
Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.  相似文献   
53.
The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5′His6WS/DGAT comprising an N-terminal His6 tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5′His6atf). By employing SP-Sepharose high-pressure and Ni-nitrilotriacetic acid fast-protein liquid chromatographies, a 19-fold enrichment with a final specific activity of 165.2 nmol mg of protein−1 min−1 was achieved by using 1-hexadecanol and palmitoyl-CoA as substrates. Incubation of purified 5′His6WS/DGAT with 1-hexadecanethiol and palmitoyl-CoA as substrates resulted in the formation of palmitic acid hexadecyl thio ester (10.4% relative specific activity of a 1-hexadecanol control). Utilization of 1,8-octanedithiol and palmitoyl-CoA as substrates led to the formation of 1-S-monopalmitoyloctanedithiol and minor amounts of 1,8-S-dipalmitoyloctanedithiol (59.3% relative specific activity of a 1-hexadecanol control). The latter dithio wax ester was efficiently produced when 1-S-monopalmitoyloctanedithiol and palmitoyl-CoA were used as substrates (13.4% specific activity relative to that of a 1-hexadecanol control). For the in vivo biosynthesis of thio wax esters, the knockout mutant Acinetobacter sp. strain ADP1acr1ΩKm, which is unable to produce fatty alcohols, was used. Cultivation of Acinetobacter sp. strain ADP1acr1ΩKm in the presence of gluconate, 1-hexadecanethiol, and oleic acid in nitrogen-limited mineral salts medium resulted in the accumulation of unusual thio wax esters that accounted for around 1.19% (wt/wt) of the cellular dry weight and consisted mainly of oleic acid hexadecyl thioester as revealed by gas chromatography-mass spectrometry.  相似文献   
54.
Rubinstein–Taybi syndrome (RSTS) is a well-known autosomal dominant mental retardation syndrome with typical facial and skeletal abnormalities. Previously, we have reported two patients presenting with RSTS and additional clinical features including failure to thrive, seizures, and intractable infections (Bartsch et al. in Eur J Hum Genet 7:748–756, 1999). Recently we identified a third patient with this condition, termed here severe RSTS, or chromosome 16p13.3 deletion syndrome. The three patients died in infancy, and all displayed a specific mutation, a chromosomal microdeletion including the 3′-end of the CREBBP gene. Using fluorescence in situ hybridization and closely spaced DNA probes, we characterized the deletion intervals in these patients and in three individuals with a deletion of CREBBP and typical RSTS. The deleted DNA segments were found to greatly vary in size, spanning from ∼40 kb to >3 Mb. Four individuals, including the patients with severe RSTS, exhibited deletions containing gene/s in addition to CREBBP. The patients with severe RSTS all had deletions comprising telomeric neighbor genes of CREBBP, including DNASE1, a dominant gene encoding a nuclease that has been associated with systemic lupus erythematodes. Our findings suggest that severe RSTS is distinct from RSTS and represents a novel true contiguous gene syndrome (chromosome 16p13.3 deletion syndrome). Because of the risk of critical infections and high mortality rate, we recommend that the size of the deletion interval should be determined in CREBBP deletion-positive patients with RSTS, especially in young children. Further studies are needed to delineate the clinical spectrum of the new disorder and to clarify the role of DNASE1.  相似文献   
55.
CD4(+) regulatory T cells (Tregs) control adaptive immune responses and promote self-tolerance. Various humanized mouse models have been developed in efforts to reproduce and study a human immune system. However, in models that require T cell differentiation in the recipient murine thymus, only low numbers of T cells populate the peripheral immune systems. T cells are positively selected by mouse MHC and therefore do not function well in an HLA-restricted manner. In contrast, cotransplantation of human fetal thymus/liver and i.v. injection of CD34(+) cells from the same donor achieves multilineage human lymphohematopoietic reconstitution, including dendritic cells and formation of secondary lymphoid organs, in NOD/SCID mice. Strong Ag-specific immune responses and homeostatic expansion of human T cells that are dependent on peripheral human APCs occur. We now demonstrate that FOXP3(+)Helios(+) "natural" Tregs develop normally in human fetal thymic grafts and are present in peripheral blood, spleen, and lymph nodes of these humanized mice. Humanized mice exhibit normal reversal of CD45 isoform expression in association with thymic egress, postthymic "naive" to "activated" phenotypic conversion, and suppressive function. These studies demonstrate the utility of this humanized mouse model for the study of human Treg ontogeny, immunobiology and therapy.  相似文献   
56.
Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow-growing mycobacteria.  相似文献   
57.
The physiology of lipid production in Streptomyces avermitilis MA-4680 with regard to the fatty acid composition of the accumulated lipids and their cellular distribution was analyzed. Cells were able to accumulate about ten to 30 lipid granules with diameters between 100 and 500 nm filling about 70–80% of the cell cytoplasm. Gas chromatography/mass spectrometry analyses of total cellular lipids and from isolated triacylglycerols (TAG) confirmed a similar fatty acid composition with a large portion of iso- and anteiso-methyl-branched fatty acids. De novo biosynthesis of wax esters (WE) appeared only during cocultivation on glucose and hexadecanol as carbon source. Homology alignments with the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; AtfA) from Acinetobacter baylyi strain ADP1 yielded one open reading frame in the genome databases of S. avermitilis MA-4680 referred to as SAV7256 with 25.3% homology. The highly conserved HHAxxDG active site motif found in AtfA, which is present in SAV7256, as well as the similar hydrophobicity profiles of AtfA and SAV7256 indicate a similar structure and function of both proteins. High acyl-CoA:diacylglycerol acyltransferase activity (DGAT; 143 pmol (mg min)−1) but low wax ester synthase activity (WS; 1.3 pmol (mg min)−1) were detected in crude extracts of S. avermitilis, which were consistent with the high TAG and negligible WE content of the cells. This indicates that TAG accumulation in S. avermitilis MA-4680 is mediated by the classical acyl-CoA-dependent DGAT pathway. Heterologous expression experiments in recombinant Escherichia coli BL21(DE3) demonstrated both WS and DGAT enzyme activity of SAV7256. Furthermore, substrate specificities of the acyltransferase SAV7256 will be discussed. Chlud Kaddor and Karolin Biermann contributed equally to this work.  相似文献   
58.
59.
60.
Gene transfer systems for Gordonia polyisoprenivorans strains VH2 and Y2K based on electroporation and conjugation, respectively, were established. Several parameters were optimized, resulting in transformation efficiencies of >4 x 10(5) CFU/ micro g of plasmid DNA. In contrast to most previously described electroporation protocols, the highest efficiencies were obtained by applying a heat shock after the intrinsic electroporation. Under these conditions, transfer and autonomous replication of plasmid pNC9503 was also demonstrated to proceed in G. alkanivorans DSM44187, G. nitida DSM44499(T), G. rubropertincta DSM43197(T), G. rubropertincta DSM46038, and G. terrae DSM43249(T). Conjugational plasmid DNA transfer to G. polyisoprenivorans resulted in transfer frequencies of up to 5 x 10(-6) of the recipient cells. Recombinant strains capable of polyhydroxyalkanoate synthesis from alkanes were constructed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号