首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   13篇
  2021年   6篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2014年   3篇
  2013年   7篇
  2012年   12篇
  2011年   15篇
  2010年   4篇
  2009年   11篇
  2008年   6篇
  2007年   15篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1968年   1篇
  1966年   1篇
  1931年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
61.
62.
Red blood cells (RBCs) are a major component of blood clots, which form physiologically as a response to injury or pathologically in thrombosis. The active participation of RBCs in thrombus solidification has been previously proposed but not yet experimentally proven. Holographic optical tweezers and single-cell force spectroscopy were used to study potential cell-cell adhesion between RBCs. Irreversible intercellular adhesion of RBCs could be induced by stimulation with lysophosphatidic acid (LPA), a compound known to be released by activated platelets. We identified Ca2+ as an essential player in the signaling cascade by directly inducing Ca2+ influx using A23187. Elevation of the internal Ca2+ concentration leads to an intercellular adhesion of RBCs similar to that induced by LPA stimulation. Using single-cell force spectroscopy, the adhesion of the RBCs was identified to be approximately 100 pN, a value large enough to be of significance inside a blood clot or in pathological situations like the vasco-occlusive crisis in sickle cell disease patients.  相似文献   
63.
Recent studies revealed a surprising regenerative capacity of insulin-producing β cells in mice, suggesting that regenerative therapy for human diabetes could in principle be achieved. Physiologic β cell regeneration under stressed conditions relies on accelerated proliferation of surviving β cells, but the factors that trigger and control this response remain unclear. Using islet transplantation experiments, we show that β cell mass is controlled systemically rather than by local factors such as tissue damage. Chronic changes in β cell glucose metabolism, rather than blood glucose levels per se, are the main positive regulator of basal and compensatory β cell proliferation in vivo. Intracellularly, genetic and pharmacologic manipulations reveal that glucose induces β cell replication via metabolism by glucokinase, the first step of glycolysis, followed by closure of K(ATP) channels and membrane depolarization. Our data provide a molecular mechanism for homeostatic control of β cell mass by metabolic demand.  相似文献   
64.

Background

Two pertussis toxin sensitive Gi proteins, Gi2 and Gi3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous Gi isoforms are functionally distinct. To test for isoform-specific functions of Gi proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC).

Methods

Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gαi2 (Gαi2 −/−) or Gαi3 (Gαi3 −/−). mRNA levels of Gαi/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gαi and Cavα1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings.

Results

In cardiac tissue from Gαi2 −/− mice, Gαi3 mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In Gαi3 −/− mouse hearts, Gαi2 mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gαi2 −/− mice was lowered (−7.9±0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (−10.7±0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gαi3 −/− mice (−14.3±0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gαi2 (but not of Gαi3) and following treatment with pertussis toxin in Gαi3 −/−. The pore forming Cavα1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cavα1 and Cavβ2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gαi2.

Conclusion

Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gαi proteins. In particular, loss of Gαi2 is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.  相似文献   
65.
The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for eryptosis, a mechanism for the RBC clearance from blood circulation. The process of PS exposure was investigated as function of the intracellular Ca(2+) content and the activation of PKCα in human and sheep RBCs. Cells were treated with lysophosphatidic acid (LPA), 4-bromo-A23187, or phorbol-12 myristate-13 acetate (PMA) and analysed by flow cytometry, single cell fluorescence video imaging, or confocal microscopy. For human RBCs, no clear correlation existed between the number of cells with an elevated Ca(2+) content and PS exposure. Results are explained by three different mechanisms responsible for the PS exposure in human RBCs: (i) Ca(2+)-stimulated scramblase activation (and flippase inhibition) by LPA, 4-bromo-A23187, and PMA; (ii) PKC activation by LPA and PMA; and (iii) enhanced lipid flop caused by LPA. In sheep RBCs, only the latter mechanism occurs suggesting absence of scramblase activity.  相似文献   
66.
67.
CHTF18 (chromosome transmission fidelity factor 18) is an evolutionarily conserved subunit of the Replication Factor C-like complex, CTF18-RLC. CHTF18 is necessary for the faithful passage of chromosomes from one daughter cell to the next during mitosis in yeast, and it is crucial for germline development in the fruitfly. Previously, we showed that mouse Chtf18 is expressed throughout the germline, suggesting a role for CHTF18 in mammalian gametogenesis. To determine the role of CHTF18 in mammalian germ cell development, we derived mice carrying null and conditional mutations in the Chtf18 gene. Chtf18-null males exhibit 5-fold decreased sperm concentrations compared to wild-type controls, resulting in subfertility. Loss of Chtf18 results in impaired spermatogenesis; spermatogenic cells display abnormal morphology, and the stereotypical arrangement of cells within seminiferous tubules is perturbed. Meiotic recombination is defective and homologous chromosomes separate prematurely during prophase I. Repair of DNA double-strand breaks is delayed and incomplete; both RAD51 and γH2AX persist in prophase I. In addition, MLH1 foci are decreased in pachynema. These findings demonstrate essential roles for CHTF18 in mammalian spermatogenesis and meiosis, and suggest that CHTF18 may function during the double-strand break repair pathway to promote the formation of crossovers.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号