首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   5篇
  2023年   2篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有58条查询结果,搜索用时 46 毫秒
21.
Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible.  相似文献   
22.
The NKG2D receptor is one of the most potent activating natural killer cell receptors involved in antiviral responses. The mouse NKG2D ligands MULT-1, RAE-1, and H60 are regulated by murine cytomegalovirus (MCMV) proteins m145, m152, and m155, respectively. In addition, the m138 protein interferes with the expression of both MULT-1 and H60. We show here that one of five RAE-1 isoforms, RAE-1δ, is resistant to downregulation by MCMV and that this escape has functional importance in vivo. Although m152 retained newly synthesized RAE-1δ and RAE-1γ in the endoplasmic reticulum, no viral regulator was able to affect the mature RAE-1δ form which remains expressed on the surfaces of infected cells. This differential susceptibility to downregulation by MCMV is not a consequence of faster maturation of RAE-1δ compared to RAE-1γ but rather an intrinsic property of the mature surface-resident protein. This difference can be attributed to the absence of a PLWY motif from RAE-1δ. Altogether, these findings provide evidence for a novel mechanism of host escape from viral immunoevasion of NKG2D-dependent control.Cytomegaloviruses (CMVs) are ubiquitous pathogens causing morbidity in immune suppressed and immunodeficient hosts (34). Since CMVs are strictly species-specific viruses, the infection of mice with murine CMV (MCMV) represents a widely used model for studying CMV infection and disease (22, 40).Natural killer (NK) cells play a crucial role in the control of many viruses and are among the first cells to sense proinflammatory cytokines, as well as the perturbations in the expression of major histocompatibility complex (MHC) class I molecules and other surface molecules induced by viral infection (13). Both human CMV (HCMV) and MCMV have evolved strategies to compromise innate immunity-mediated by NK cells (20, 49).Although proinflammatory cytokines released during the early stage of MCMV infection induce NK cell activation, this is usually not sufficient for virus control (11). Namely, most mouse strains fail to mount an effector phase of NK cell response against infected cells (42), in spite of the fact that MCMV infection causes the downmodulation of MHC I molecules (17), which should activate NK cells via a “missing-self” mechanism (28). The lack of NK cell activation by MCMV is even more puzzling considering that NK cells possess activating receptors that recognize cellular ligands induced by infection. Among these is the activating receptor NKG2D, a C-type lectinlike receptor encoded by a single gene in humans and rodents (39). Engagement of NKG2D transduces a strong activating signal to promote NK cell stimulation. NKG2D also serves as a costimulatory receptor on CD8+ T cells (2). Several NKG2D ligands have been described in mice: MULT-1, H60a, H60b, H60c, and RAE-1α, -1β, -1γ, -1δ, and -1ɛ isoforms (4-6, 10, 14, 32, 35, 44). What prevents the activation of NK cells via the NKG2D receptor during MCMV infection? We and others have characterized four MCMV proteins involved in the downmodulation of NKG2D ligands (15, 23, 24, 26, 29, 30). Furthermore, the deletion of any of the four MCMV inhibitors of NKG2D ligands rendered virus mutants susceptible to NK cell control in vivo. The MCMV immunoevasin of NKG2D described first was the glycoprotein gp40, encoded by the gene m152 (23). Note that m152 also compromises the CD8+ T-cell response by downregulation of MHC class I molecules (25, 54). Later, it was noticed that m152 also affects the expression of RAE-1 proteins (29). It is important to point out that mouse strains express different RAE-1 isoforms. Some strains, such as BALB/c, express RAE-1α, -1β, and -1γ, while others, such as C57BL/6, express RAE-1δ and -1ɛ (29). All five RAE-1 isoforms are glycosylphosphatidylinositol (GPI)-linked proteins and contain MHC class I-like α1 and α2 domains (6, 10, 14, 35).Based on our initial observation that there is NKG2D-dependent control of wild type (WT) MCMV in certain mouse strains, we postulated NKG2D ligands that resist virus mediated downmodulation. We show here that the RAE-1 proteins differ in their susceptibility to downregulation by MCMV. In contrast to RAE-1γ, representing the sensitive isoform, surface-resident RAE-1δ remains present on MCMV-infected cells. The differential downmodulation of RAE-1 isoforms during MCMV infection is caused by differences in the stability of the mature RAE-1 molecules associated with a sequence motif absent in RAE-1δ.  相似文献   
23.
In this paper, a hyperelastic and thermodynamically consistent model for soft tissue is developed that is able to describe the change of the initial orientation of the collagen fibres. Full numerical implementation is considered as well. The collagen architecture is assumed to reorient driven by a specific thermodynamical force. The anisotropy is described by a strain energy function, which is decomposed into a part related to the matrix and a part related to the fibres. The initial fibre orientation is defined by a structural tensor, while the current orientation is described by a time-dependent structural tensor, which results from the initial one by a rotational transformation. The rotation tensor is obtained via an integration process of a rate tensor, which depends on an adequately defined thermodynamical force. The integration is achieved via an exponential map algorithm, where it is shown that the rotation is necessarily a two-parametric one. Efficiency of the proposed formulation is demonstrated using some numerical examples.  相似文献   
24.
Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid (PL) preferentially found in late endosomal membranes, where it forms specialized lipid domains. Recently, using cultured macrophages treated with anti-BMP antibody, we showed that BMP-rich domains are involved in cholesterol homeostasis. We had previously stressed the high propensity of BMP to accumulate docosahexaenoic acid (DHA), compared with other PUFAs. Because phosphatidylglycerol (PG) was reported as a precursor for BMP synthesis in RAW macrophages, we examined the effects of PG supplementation on both FA composition and amount of BMP in this cell line. Supplementation with dioleoyl-PG (18:1/18:1-PG) induced BMP accumulation, together with an increase of oleate proportion. Supplementation with high concentrations of didocosahexaenoyl-PG (22:6/22:6-PG) led to a marked enrichment of DHA in BMP, resulting in the formation of diDHA molecular species. However, the amount of BMP was selectively decreased. Similar effects were observed after supplementation with high concentrations of nonesterified DHA. Addition of vitamin E prevented the decrease of BMP and further increased its DHA content. Supplementation with 22:6/22:6-PG promoted BMP accumulation with an enhanced proportion of 22:6/22:6-BMP. DHA-rich BMP was significantly degraded after cell exposure to oxidant conditions, in contrast to oleic acid-rich BMP, which was not affected. Using a cell-free system, we showed that 22:6/22:6-BMP is highly oxidizable and partially protects cholesterol oxidation, compared with 18:1/18:1-BMP. Our data suggest that high DHA content in BMP led to specific degradation of this PL, possibly through the diDHA molecular species, which is very prone to peroxidation and, as such, a potential antioxidant in its immediate vicinity.  相似文献   
25.
A set of 8-methylene-, 8-methyl-, and 8-methyl-9-dihydro-oleandomycin derivatives having different combinations of stereochemistries at positions C-8 and/or C-9 have been prepared in a chemoselective and stereoselective manner and tested in vitro for antibacterial activity and inhibition of IL-6 production. Configurations of the stereocenters at C-8 and C-9 were determined using 2D NMR techniques. We have shown that change of stereochemistry at these positions can exert a major influence on antibacterial activity as well as IL-6 inhibition, providing novel macrolide derivatives with diminished antibacterial and potent anti-inflammatory activity. In addition, the anti-inflammatory activity observed in vitro was confirmed in an in vivo model of lipopolysaccharide-induced inflammation.  相似文献   
26.
Recombinatorial biosynthesis of polyketides   总被引:1,自引:0,他引:1  
Modular polyketide synthases (PKSs) from Streptomyces and related genera of bacteria produce many important pharmaceuticals. A program called CompGen was developed to carry out in silico homologous recombination between gene clusters encoding PKSs and determine whether recombinants have cluster architectures compatible with the production of polyketides. The chemical structure of recombinant polyketides was also predicted. In silico recombination was carried out for 47 well-characterised clusters. The predicted recombinants would produce 11,796 different polyketide structures. The molecular weights and average degree of reduction of the chemical structures are dispersed around the parental structures indicating that they are likely to include pharmaceutically interesting compounds. The details of the recombinants and the chemical structures were entered in a database called r-CSDB. The virtual compound library is a useful resource for computer-aided drug design and chemoinformatics strategies for finding pharmaceutically relevant chemical entities. A strategy to construct recombinant Streptomyces strains to produce these polyketides is described and the critical steps of mobilizing large biosynthetic clusters and producing new linear cloning vectors are illustrated by experimental data.  相似文献   
27.
Successful genome mining is dependent on accurate prediction of protein function from sequence. This often involves dividing protein families into functional subtypes (e.g., with different substrates). In many cases, there are only a small number of known functional subtypes, but in the case of the adenylation domains of nonribosomal peptide synthetases (NRPS), there are >500 known substrates. Latent semantic indexing (LSI) was originally developed for text processing but has also been used to assign proteins to families. Proteins are treated as ‘‘documents’’ and it is necessary to encode properties of the amino acid sequence as ‘‘terms’’ in order to construct a term-document matrix, which counts the terms in each document. This matrix is then processed to produce a document-concept matrix, where each protein is represented as a row vector. A standard measure of the closeness of vectors to each other (cosines of the angle between them) provides a measure of protein similarity. Previous work encoded proteins as oligopeptide terms, i.e. counted oligopeptides, but used no information regarding location of oligopeptides in the proteins. A novel tokenization method was developed to analyze information from multiple alignments. LSI successfully distinguished between two functional subtypes in five well-characterized families. Visualization of different ‘‘concept’’ dimensions allows exploration of the structure of protein families. LSI was also used to predict the amino acid substrate of adenylation domains of NRPS. Better results were obtained when selected residues from multiple alignments were used rather than the total sequence of the adenylation domains. Using ten residues from the substrate binding pocket performed better than using 34 residues within 8 Å of the active site. Prediction efficiency was somewhat better than that of the best published method using a support vector machine.  相似文献   
28.
A novel mechanism of DNA endonucleolytic cleavage has been visualized for the homing endonuclease I-PpoI by trapping the uncleaved enzyme-substrate complex and comparing it to the previously visualized product complex. This enzyme employs a unique single metal mechanism. A magnesium ion is coordinated by an asparagine residue and two DNA oxygen atoms and stabilizes the phosphoanion transition state and the 3'oxygen leaving group. A hydrolytic water molecule is activated by a histidine residue for an in-line attack on the scissile phosphate. A strained enzyme-substrate-metal complex is formed before cleavage, then relaxed during the reaction.  相似文献   
29.
At its most basic level, pre-mRNA splicing can be described as two coordinated nuclease reactions that cleave an intron at either end and result in ligation of the flanking exons. The fact that these reactions are catalyzed by a approximately 3-MDa behemoth of protein and RNA (the spliceosome) challenges most biochemical and structural approaches currently used to characterize lesser-sized enzymes. In addition to this molecular complexity, the highly dynamic nature of splicing complexes provides additional hurdles for mechanistic studies or three-dimensional structure determination. Thus, the methods used to study the spliceosome often probe individual properties of the machine, but no complete, high-resolution picture of splicing catalysis has yet emerged. To facilitate biochemical and structural studies of native splicing complexes, we recently described purification of the catalytic form of the spliceosome (known as C complex). This native complex is suitable for electron microscopic structure determination by single-particle methods. In this paper, we describe the purification in detail and discuss additional methods for trapping and analyzing other splicing complexes.  相似文献   
30.
The homing endonuclease I-PpoI severely bends its DNA target, resulting in significant deformations of the minor and major groove near the scissile phosphate groups. To study the role of conformational changes within the protein catalyst and the DNA substrate, we have determined the structure of the enzyme in the absence of bound DNA, performed gel retardation analyses of DNA binding and bending, and have mutagenized a leucine residue that contacts an adenine nucleotide at the site of cleavage. The structure of the L116A/DNA complex has been determined and the effects of the mutation on affinity and catalysis have been measured. The wild-type protein displays a rigid-body rotation of its individual subunits upon DNA binding. Homing site DNA is not detectably bent in the absence of protein, but is sharply bent in both the wild-type and L116A complexes. These results indicate that binding involves a large distortion of the DNA and a smaller change in protein conformation. Leucine 116 is critical for binding and catalysis: it appears to be important for forming a well-ordered protein-DNA complex at the cleavage site, for maximal deformation of the DNA, and for desolvation of the nucleotide bases that are partially unstacked in the enzyme complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号