首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1683篇
  免费   86篇
  2022年   5篇
  2021年   30篇
  2020年   3篇
  2019年   25篇
  2018年   14篇
  2017年   12篇
  2016年   33篇
  2015年   48篇
  2014年   75篇
  2013年   77篇
  2012年   117篇
  2011年   107篇
  2010年   63篇
  2009年   53篇
  2008年   130篇
  2007年   101篇
  2006年   104篇
  2005年   98篇
  2004年   116篇
  2003年   107篇
  2002年   117篇
  2001年   20篇
  2000年   14篇
  1999年   22篇
  1998年   29篇
  1997年   16篇
  1996年   15篇
  1995年   15篇
  1994年   17篇
  1993年   17篇
  1992年   19篇
  1991年   13篇
  1990年   11篇
  1989年   12篇
  1988年   12篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   7篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1977年   6篇
  1975年   5篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1965年   2篇
排序方式: 共有1769条查询结果,搜索用时 31 毫秒
41.
Three kinds of nuclease preparations, each of which having both endonuclease activity that formed 5′-mononucleotides and 3′-nucleotidase activity, were separated and partially purified from Shii-take, Lentinus edodes. Both enzyme activities of each preparation showed a similar thermostability and electrophoretic mobility on Polyacrylamide gel, and a competitive relationship was observed between RNA and 3′-AMP in their enzyme reactions. From these results, it is concluded that both enzyme activities of these three preparations reside in a single protein, respectively. They resemble one another in substrate specificity, cleavage pattern of RNA and thermostability, but are distinguishable from one another by molecular weight, electrophoretic mobility and optimum pH for degradation of RNA.  相似文献   
42.
Hata  Yuki  Kyozuka  Junko 《Plant molecular biology》2021,107(4-5):213-225
Plant Molecular Biology - This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution...  相似文献   
43.
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project ‘Principles of pluripotent stem cells underlying plant vitality’ was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.  相似文献   
44.
Landscape and Ecological Engineering - There have been many earlier studies of the biodiversity and ecosystem services of abandoned farmlands, but studies of abandoned villages are limited,...  相似文献   
45.
Landscape and Ecological Engineering - Investigating factors underlying human-wildlife conflicts in agricultural landscapes is important for both preventing crop damage and wildlife conservation....  相似文献   
46.
47.
The aim of this study is to evaluate oxidative stress in man after paraquat ingestion by analyzing 7 &#102 - and 7 &#103 -hydroperoxycholest-5-en-3 &#103 -ol (7 &#102 - and 7 &#103 -OOH) as well as oxysterols, cholesterol oxidation products, as indices of lipid peroxidation. Lung, kidney, and liver were collected at autopsy from seven patients with paraquat poisoning and seven controls matched for age and sex. We identified for the first time 7-ketocholesterol (7-keto) and 7-hydroxycholesterol (7 &#102 -OH and 7 &#103 -OH) in human kidney by LC-MS. Next, we quantified 7 &#102 -OOH and 7 &#103 -OOH by HPLC with postcolumn chemiluminescence as well as oxysterols by HPLC-UV. Both 7 &#102 -OOH and 7 &#103 -OOH detected in lung and kidney from the controls were as low as the paraquat group. In contrast, we found both 7-keto and 7 &#103 -OH in lung and 7-keto in kidney from the paraquat group were significantly higher than from the controls. This is the first report on accumulated oxysterols in lung and kidney from human paraquat poisoning. It seems to reflect greater oxidative stress in the pathology of paraquat intoxication.  相似文献   
48.

Rationale

Deterioration of ventricular fibrillation (VF) into asystole or severe bradycardia (electrical failure) heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown.

Objective

To determine metabolic factors of early electrical failure in an Ex-vivo canine model of cardiac arrest (VF+global ischemia).

Methods and Results

Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys), while 5/9 hearts maintained VF for at least 19.7 min (late-asys). As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05). Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi) than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ) during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05).

Conclusions

High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.  相似文献   
49.
We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.  相似文献   
50.

Aims

Sweet potato (Ipomoea batatas) is known for its ability to grow under nitrogen-limited conditions. To clarify the possible contribution of biological nitrogen fixation, we tried to isolate and identify diazotrophic bacteria from sweet potatoes.

Methods

By using cultivation technique, we isolated putative endophytes, which possess nifH genes, from surface-sterilized sweet potatoes. Their nitrogen-fixing abilities were demonstrated by the acetylene reduction assay in a semi-solid malate medium and sweet potato extracts. We also examined the colonization of an isolated strain (AT1) in sweet potatoes and their influence on growth and nitrogen fixation in plants as assessed by an acetylene reduction assay and 15N-isotope dilution technique.

Results

The isolates were identified as strains of Bradyrhizobium sp. AT1, Paenibacillus sp. AS2 and Pseudomonas sp. T16 based on their 16S rRNA gene sequences. They showed acetylene reduction activity (ARA) in the semi-solid malate medium. Among them, B. sp. AT1 showed ARA in sweet potato extracts under micro-aerobic conditions whereas both P. sp. AS2 and P. sp. T16 showed no ARA. The inoculation of B. sp. AT1 to the sweet potatoes resulted in increases in the fresh weights and detection of ARA in the inoculated plants. Moreover, the reduction of 15N atom % was observed in the inoculated plants compared to uninoculated controls.

Conclusions

B. sp. AT1 actively expresses nitrogenase activity in sweet potatoes and may contribute to the nitrogen nutrition of host plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号