首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   38篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   22篇
  2014年   29篇
  2013年   39篇
  2012年   35篇
  2011年   40篇
  2010年   21篇
  2009年   13篇
  2008年   22篇
  2007年   20篇
  2006年   25篇
  2005年   15篇
  2004年   17篇
  2003年   12篇
  2002年   13篇
  2001年   9篇
  2000年   9篇
  1999年   12篇
  1998年   6篇
  1997年   5篇
  1996年   9篇
  1995年   3篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1965年   1篇
排序方式: 共有500条查询结果,搜索用时 31 毫秒
121.
Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups possess very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.  相似文献   
122.
Two isolates, with an optimum growth temperature of about 45–50 °C and an optimum pH for growth between 7.5 and 8.5, were recovered from a hot spring in the Furnas area on the Island of São Miguel in the Azores. Strains form irregular rod-shaped cells are motile and stain Gram negative. The cells multiply by budding. These strains are non-pigmented, strictly aerobic, catalase and oxidase positive. These organisms assimilated carbohydrates, organic acids and amino acids. The major fatty acids are 19:0cyclo ω8c and 18:0. Ubiquinone 10 is the major respiratory quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine in addition to one unidentified aminolipid and one unidentified glycolipid. Bacteriochlorophyll a, puf genes and RuBisCo genes were not detected. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Afifella, Rhodobium, Anderseniella and Amorphus to which they have sequence similarity in the range 93–94%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain CB-27AT (=DSM 19345T=LMG 24113T) for which we propose the name Tepidamorphus gemmatus.  相似文献   
123.
We have previously demonstrated selection favoring the JG strain of Trypanosoma cruzi in hearts of BALB/c mice that were chronically infected with an equal mixture of the monoclonal JG strain and a clone of the Colombian strain, Col1.7G2. To evaluate whether cell invasion efficiency drives this selection, we infected primary cultures of BALB/c cardiomyocytes using these same T. cruzi populations. Contrary to expectation, Col1.7G2 parasites invaded heart cell cultures in higher numbers than JG parasites; however, intracellular multiplication of JG parasites was more efficient than that of Col1.7G2 parasites. This phenomenon was only observed for cardiomyocytes and not for cultured Vero cells. Double infections (Col1.7G2 + JG) showed similar results. Even though invasion might influence tissue selection, our data strongly suggest that intracellular development is important to determine parasite tissue tropism.  相似文献   
124.
The relationships between plant carbon resources, soil carbon and nitrogen content, and ectomycorrhizal fungal (EMF) diversity in a monospecific, old-growth beech (Fagus sylvatica) forest were investigated by manipulating carbon flux by girdling. We hypothesized that disruption of the carbon supply would not affect diversity and EMF species numbers if EM fungi can be supplied by plant internal carbohydrate resources or would result in selective disappearance of EMF taxa because of differences in carbon demand of different fungi. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Girdling did not affect root colonization but decreased EMF species richness of an estimated 79 to 90 taxa to about 40 taxa. Cenococcum geophilum, Lactarius blennius, and Tomentella lapida were dominant, colonizing about 70% of the root tips, and remained unaffected by girdling. Mainly cryptic EMF species disappeared. Therefore, the Shannon-Wiener index (H′) decreased but evenness was unaffected. H′ was positively correlated with glucose, fructose, and starch concentrations of fine roots and also with the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON), suggesting that both H′ and DOC/DON were governed by changes in belowground carbon allocation. Our results suggest that beech maintains numerous rare EMF species by recent photosynthate. These EM fungi may constitute biological insurance for adaptation to changing environmental conditions. The preservation of taxa previously not known to colonize beech may, thus, form an important reservoir for future forest development.In temperate and boreal forest ecosystems, most tree species form ectomycorrhizal fungal (EMF) associations. EM fungi ensheathe the root tip, forming characteristic mantlelike structures (1). The presence and lengths of hyphae emanating from the mantle are characteristic of different EMF species and establish different soil exploration types (2). It has been assumed that EMF communities are adapted specifically to mobilize sparse soil nutrient resources in boreal and temperate forests (11, 50). Current estimates indicate that about 80% of all nitrogen and phosphorus present in plants has been taken up via mycorrhizas (30, 41, 63).Unlike free-living soil microbes, EM fungi have direct access to reduced carbon from their host plants. More than 50 years ago, Melin and Nilsson (46) showed that 14C applied to leaves was recovered within one day in EM fungi, suggesting a strong dependence of fungal metabolism on host photosynthesis. Subsequent isotopic studies corroborated tight connections between current photosynthate and EM fungi (28, 42). EMF hyphae constitute the main path of plant-derived carbon into the soil (24, 29). Furthermore, EMF hyphae contribute substantially to soil respiration (25% from hyphae and 15% from roots) (27). As hyphal respiration decreases strongly in response to girdling of trees, a tight metabolic link between extramatrical mycelia and host photosynthetic activity must exist (5, 9, 32). In addition, fruiting body formation of EMF species was strongly dependent on host photosynthetic capacity (32, 40). In contrast, the significance of the current assimilate supply for EMF colonization of root tips and for community composition is not yet well understood. Since trees contain substantial stores of carbohydrates in the roots and stem (7), it may be expected that EM fungi can be maintained if this carbon resource is available. For example, defoliation experiments with conifers, which restricted but did not eliminate current photosynthate transfer to roots, showed no effects on root EMF colonization. Massive defoliation that negatively affected aboveground biomass production suppressed morphotypes with thick mantles compared to those with thin mantles, suggesting a shift to less-carbon-demanding EMF species (14, 40, 44, 54, 56). Earlier studies also reported decreased EMF colonization of root tips (21, 52).In a common garden experiment with young beech trees, strong shading over several years, which severely limited plant growth, suppressed EMF colonization and resulted in low EMF diversity (20). EMF community composition was affected strongly by shading and slightly by short-term girdling, suggesting that EMF taxa are sensitive to changes in plant internal carbohydrate resources (20). However, the overall EMF diversity was low, probably because the young trees were grown in nutrient-rich compost soil (20). The significance of photoassimilates for EMF abundance, diversity, and community composition, therefore, remains to be shown for adult forest trees, which usually have high EMF diversity and low nitrogen availability (10, 26, 53, 61).The aim of this work was to test the hypothesis that EMF abundance and diversity are independent of the current photoassimilate supply and can be maintained by internal resources. To investigate this concept, old-growth beech trees (Fagus sylvatica L.) were girdled to suppress carbon allocation to roots. Since disruption of the current assimilate flux affects the carbohydrate source strength, we hypothesized that changes in EMF taxon composition would occur if EMF species had different carbon demands. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Since girdling also affects carbon release into and probably nutrient uptake from soil, the influence of possible feedback by changes in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON) in the soil on EMF diversity was also assessed.  相似文献   
125.
The events and mechanisms that lead to interspecies transmission of, and host adaptation to, influenza A virus are unknown; however, both surface and internal proteins have been implicated. Our previous report highlighted the role that Japanese quail play as an intermediate host, expanding the host range of a mallard H2N2 virus, A/mallard/Potsdam/178-4/83 (H2N2), through viral adaptation. This quail-adapted virus supported transmission in quail and increased its host range to replicate and be transmitted efficiently in chickens. Here we report that of the six amino acid changes in the quail-adapted virus, a single change in the hemagglutinin (HA) was crucial for transmission in quail, while the changes in the polymerase genes favored replication at lower temperatures than those for the wild-type mallard virus. Reverse genetic analysis indicated that all adaptive mutations were necessary for transmission in chickens, further implicating quail in extending this virus to terrestrial poultry. Adaptation of the quail-adapted virus in chickens resulted in the alteration of viral tropism from intestinal shedding to shedding and transmission via the respiratory tract. Sequence analysis indicated that this chicken-adapted virus maintained all quail-adaptive mutations, as well as an additional change in the HA and, most notably, a 27-amino-acid deletion in the stalk region of neuraminidase (NA), a genotypic marker of influenza virus adaptation to chickens. This stalk deletion was shown to be responsible for the change in virus tropism from the intestine to the respiratory tract.Of the 16 known hemagglutinin (HA) subtypes, only 3 (H1, H2, and H3) have established stable lineages in humans. The H2N2 virus caused a pandemic in 1957 and circulated in the human population until reassortment of the H2N2 virus with an avian H3 virus resulted in the H3N2 pandemic of 1968 (36). Since then, H2N2 viruses have been absent from the human population; however, the H2 subtype has been repeatedly isolated in wild-bird surveillance, and its HA has been found to be antigenically similar to the H2 pandemic virus HA (23, 25, 36). An H2 influenza virus containing human-like receptor specificity was recently isolated as an H2N3 avian-swine reassortant. This virus caused disease and was transmitted in swine and ferrets (24), indicating that this subtype continues to circulate and mutate and can cross the species barrier to mammals. The repeat introduction of a novel H1N1 pandemic this past year (12, 37) highlights the need to understand the mechanisms of introduction, adaptation, and transmission of avian H2N2 influenza viruses in terrestrial birds and potentially mammalian species.Our previous study built on reports that Japanese quail (Coturnix coturnix) play an important role as an intermediate host in the adaptation of avian influenza viruses to land-based birds (38). Japanese quail are typically more susceptible to aquatic influenza viruses than other terrestrial poultry. These viruses establish infection in the respiratory tract, and shedding occurs via aerosol (2, 19, 26, 34, 38, 43). Quail have been implicated in the transmission of avian influenza viruses, such as H5N1 and H9N2 viruses, which have crossed the species barrier to infect humans (9, 14, 15, 22, 28). The susceptibility of quail to multiple subtypes and their role in interspecies transmission led to their removal from live-bird markets in Hong Kong in 2000; however, they continue to be an integral part of live-bird markets throughout the world. Their role as potential intermediate hosts requires further study to identify important molecular markers in the adaptation via quail of avian viruses to other terrestrial poultry, and possibly to humans.The molecular determinants of the host range and pathogenesis of influenza A viruses have been linked to multiple regions of the 11 genes, most notably those encoding the viral surface glycoproteins (HA and neuraminidase [NA]) and the polymerase proteins (PB2, PB1, PA, and NP). However, a comprehensive map of the various determinants remains incomplete, and the molecular mechanisms involved are unclear. In our previous report, we demonstrated that through the use of quail as an intermediate host, a mallard H2N2 influenza virus, A/mallard/Potsdam/178-4/83 (mall/178), which in its wild-type (wt) form was unable to be transmitted in quail or to establish an efficient infection in chickens, was able, in its adapted form (qa-mall/178), not only to be transmitted to sentinel quail but also to replicate to efficient levels in the chicken intestinal tract and to be transmitted to sentinel cagemates via the fecal-oral route. This adaptation was the result of six serial passages of lung homogenates in quail that led to six amino acid changes in four genes (38). Here we present data confirming the role that Japanese quail play in the transmission of this mall/178 H2N2 virus in land-based birds. Reverse genetics studies confirmed that the amino acid changes produced during the adaptation in quail were necessary for the infection of chickens with this virus and for its transmission in chickens. Further adaptation of the qa-mall/178 H2N2 virus in chickens, aimed at establishing replication in the respiratory tract, resulted in a deletion in the stalk region of the NA, which supported replication in the chicken trachea and lung. This 27-amino-acid deletion in the stalk region of the N2 NA is characteristic of the adaptation of aquatic influenza viruses to domestic poultry, particularly chickens (3, 5, 29). Our work indicates that through the use of quail as an intermediate host, this mallard H2N2 virus is able to further adapt within an additional terrestrial poultry species, potentially improving its chances of expanding its host range further.  相似文献   
126.
A polymeric solution and a reinforcement phase can work as an injectable material to fill up bone defects. However, the properties of the solution should be suitable to enable the transport of that extra phase. Additionally, the use of biocompatible materials is a requirement for tissue regeneration. Thus, we intended to optimize a biocompatible polymeric solution able to carry hydroxyapatite microspheres into bone defects using an orthopedic injectable device. To achieve that goal, polymers usually regarded as biocompatible were selected, namely sodium carboxymethylcellulose, hydroxypropylmethylcellulose, and Na-alginate (ALG). The rheological properties of the polymeric solutions at different concentrations were assessed by viscosimetry before and after moist heat sterilization. In order to correlate rheological properties with injectability, solutions were tested using an orthopedic device applied for minimal invasive surgeries. Among the three polymers, ALG solutions presented the most suitable properties for our goal and a non-sterile ALG 6% solution was successfully used to perform preliminary injection tests of hydroxyapatite microspheres. Sterile ALG 7.25% solution was found to closely match non-sterile ALG 6% properties and it was selected as the optimal vehicle. Finally, sterile ALG 7.25% physical stability was studied at different temperatures over a 3-month period. It was observed that its rheological properties presented minor changes when stored at 25°C or at 4°C.  相似文献   
127.
The methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with the expression of a thermolabile enzyme with decreased activity that influences the pool of methyl-donor molecules. Several studies have reported an association between C677T polymorphism and susceptibility to colorectal cancer (CRC). Considering that methylation abnormalities appear to be important for the pathogenesis of CRC, we examined the correlation between the genotype of the MTHFR C677T polymorphism, hypermethylation of the promoter region of five relevant genes (DAPK, MGMT, hMLH1, p16(INK4a), and p14(ARF)), and microsatellite instability, in 106 patients with primary CRCs in Brazil. We did not find significant differences in the genotypic frequencies of the MTHFR C677T polymorphism when one or more loci were hypermethylated. However, we did find a significant excess of 677TT individuals among patients with CRC who had microsatellite instability. This strong association was independent of the methylation status of hMLH1 and of the biogeographical genomic ancestry of the patients. Although the mechanism responsible for the link between the C677T polymorphism and microsatellite instability was not apparent, this finding may provide a clue towards a better understanding of the pathogenesis of microsatellite instability in human colorectal cancer.  相似文献   
128.
Acquisition of detailed knowledge of the structure and evolution of Trypanosoma cruzi populations is essential for control of Chagas disease. We profiled 75 strains of the parasite with five nuclear microsatellite loci, 24Salpha RNA genes, and sequence polymorphisms in the mitochondrial cytochrome oxidase subunit II gene. We also used sequences available in GenBank for the mitochondrial genes cytochrome B and NADH dehydrogenase subunit 1. A multidimensional scaling plot (MDS) based in microsatellite data divided the parasites into four clusters corresponding to T. cruzi I (MDS-cluster A), T. cruzi II (MDS-cluster C), a third group of T. cruzi strains (MDS-cluster B), and hybrid strains (MDS-cluster BH). The first two clusters matched respectively mitochondrial clades A and C, while the other two belonged to mitochondrial clade B. The 24Salpha rDNA and microsatellite profiling data were combined into multilocus genotypes that were analyzed by the haplotype reconstruction program PHASE. We identified 141 haplotypes that were clearly distributed into three haplogroups (X, Y, and Z). All strains belonging to T. cruzi I (MDS-cluster A) were Z/Z, the T. cruzi II strains (MDS-cluster C) were Y/Y, and those belonging to MDS-cluster B (unclassified T. cruzi) had X/X haplogroup genotypes. The strains grouped in the MDS-cluster BH were X/Y, confirming their hybrid character. Based on these results we propose the following minimal scenario for T. cruzi evolution. In a distant past there were at a minimum three ancestral lineages that we may call, respectively, T. cruzi I, T. cruzi II, and T. cruzi III. At least two hybridization events involving T. cruzi II and T. cruzi III produced evolutionarily viable progeny. In both events, the mitochondrial recipient (as identified by the mitochondrial clade of the hybrid strains) was T. cruzi II and the mitochondrial donor was T. cruzi III.  相似文献   
129.
Among azoospermic and severely oligozoospermic men, 7-15% present microdeletions of a region on the long arm of the Y chromosome that has been called AZF (azoospermia factor). Because these deletions present varying relative frequencies in different populations, we decided to ascertain whether their presence was correlated with specific Y-chromosome haplotypes. For that, we evaluated 51 infertile Israeli men, 9 of whom had microdeletions in AZF. Haplotypes were identified using a hierarchical system with eight biallelic DNA markers. We also checked for the presence of the deletion marker 50f2/C, which was absent in all seven patients with isolated AZFc deletion and also in the one patient with isolated AZFb deletion, suggesting that these microdeletions overlap. As expected, haplogroup J was the most common (47%), followed by equal frequencies of haplogroups Y* (xDE, J, K), P* (xR1a, R1b8), K* (xP), and E. In six patients with AZFc deficiencies of comparable size, three belonged to haplogroup J, two belonged to haplogroup P* (xR1a, R1b8), and one belonged to haplogroup R1a. Also, there were no significant differences in the haplotype frequencies between the groups with and without microdeletions. Thus we did not identify any association of a specific haplogroup with predisposition to de novo deletion of the AZF region in the Israeli population.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号