首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7807篇
  免费   652篇
  国内免费   1篇
  2023年   27篇
  2022年   29篇
  2021年   176篇
  2020年   77篇
  2019年   116篇
  2018年   132篇
  2017年   115篇
  2016年   248篇
  2015年   373篇
  2014年   444篇
  2013年   513篇
  2012年   668篇
  2011年   651篇
  2010年   452篇
  2009年   438篇
  2008年   534篇
  2007年   525篇
  2006年   469篇
  2005年   457篇
  2004年   433篇
  2003年   412篇
  2002年   365篇
  2001年   68篇
  2000年   47篇
  1999年   67篇
  1998年   80篇
  1997年   58篇
  1996年   50篇
  1995年   40篇
  1994年   49篇
  1993年   52篇
  1992年   31篇
  1991年   34篇
  1990年   22篇
  1989年   23篇
  1988年   25篇
  1987年   16篇
  1986年   17篇
  1985年   13篇
  1984年   8篇
  1983年   17篇
  1982年   8篇
  1981年   15篇
  1980年   6篇
  1978年   10篇
  1977年   12篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
排序方式: 共有8460条查询结果,搜索用时 31 毫秒
941.
Identifying the kinesin motors that interact with different vesicle populations is a longstanding and challenging problem with implications for many aspects of cell biology. Here we introduce a new live-cell assay to assess kinesin-vesicle interactions and use it to identify kinesins that bind to vesicles undergoing dendrite-selective transport in cultured hippocampal neurons. We prepared a library of "split kinesins," comprising an axon-selective kinesin motor domain and a series of kinesin tail domains that can attach to their native vesicles; when the split kinesins were assembled by chemical dimerization, bound vesicles were misdirected into the axon. This method provided highly specific results, showing that three Kinesin-3 family members-KIF1A, KIF13A, and KIF13B-interacted with dendritic vesicle populations. This experimental paradigm allows a systematic approach to evaluate motor-vesicle interactions in living cells.  相似文献   
942.
XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.  相似文献   
943.
944.
Ovulatory dysfunction occurs in women with endometriosis, yet the mechanisms are unknown. We have shown that endometriotic lesions synthesize and secrete tissue inhibitor of metalloproteinase (TIMP) 1 into the peritoneal cavity in humans and a rat model of endometriosis, where excess TIMP1 localizes in the ovarian theca in endometriosis and modulating peritoneal TIMP1 alters ovarian dynamics. Here, we evaluated whether mechanisms whereby excessive peritoneal fluid TIMP1 negatively impacts ovarian function are matrix metalloproteinase (MMP)-dependent and/or MMP-independent actions. Rats were treated with a mutated TIMP1 without MMP inhibitory function (Ala-TIMP1), wild-type TIMP1 (rTIMP1), or PBS. Rats treated with Ala-TIMP1 or rTIMP1 had fewer antral follicles, fewer new corpora lutea, and the presence of luteinized unruptured follicle syndrome compared with PBS rats. Ala-TIMP1 and rTIMP1 differentially caused downstream changes in gene expression and protein localization related to ovulation, as measured by whole-genome microarray with quantitative real-time PCR validation and immunohistochemistry. More vascular endothelial growth factor and FN were expressed and localized in ovaries of Ala-TIMP1-treated rats compared to rTIMP1- and PBS-treated rats inferring MMP-independent functions. Less caspase 3 localized in ovaries of rTIMP1 compared with the other two groups, and was thus dependent on MMP action. Furthermore, after coimmunoprecipitation, more CD63 was bound to TIMP1 in ovaries of rats treated with Ala-TIMP1 than in rTIMP1-treated rats, providing evidence for another MMP-independent mechanism of ovulatory dysfunction. We predict that MMP-dependent and MMP-independent events are involved in improper fortification of the follicular wall through multiple mechanisms, such as apoptosis inhibition, extracellular matrix components and angiogenesis. Collectively, excessive peritoneal TIMP1 causes changes in ovarian dynamics, both dependently and independently of MMP inhibition.  相似文献   
945.
946.
Human eggs are highly aneuploid, with female age being the only known risk factor. Here this aging phenomenon was further studied in Swiss CD1 mice aged between 1 and 15 mo. The mean number of eggs ± SEM recovered from mice following superovulation peaked at 22.5 ± 3.8 eggs/oviduct in 3-mo-old females, decreasing markedly between 6 and 9 mo old, and was only 2.1 ± 0.2 eggs/oviduct by 15 mo. Measurement of aneuploidy in these eggs revealed a low rate, ~3-4%, in mice aged 1 and 3 mo, rising to 12.5% by 9 mo old and to 37.5% at 12 mo. Fifteen-month-old mice had the highest rate of aneuploidy, peaking at 60%. The in situ chromosome counting technique used here allowed us to measure with accuracy the distance between the kinetochores in the sister chromatids of the eggs analyzed for aneuploidy. We observed that this distance increased in eggs from older females, from 0.38 ± 0.01 μm at 1 mo old to 0.82 ± 0.03 μm by 15 mo. Furthermore, in 3- to 12-mo-old females, aneuploid eggs had significantly larger interkinetochore distances than euploid eggs from the same age, and measurements were similar to eggs from the oldest mice. However, the association between aneuploidy and interkinetochore distance was not observed at the oldest, 15-mo age, despite such measurements being maximal. We conclude that in aging CD1 mice, a reduction in the ovulated egg number precedes a rise in aneuploidy and, furthermore, except at very advanced ages, increased interkinetochore distance is associated with aneuploidy.  相似文献   
947.
Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.  相似文献   
948.
Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.  相似文献   
949.
Eph kinases constitute the largest receptor tyrosine kinase family, and their ligands, ephrins (Efns), are also cell surface molecules. Although they are ligands, Efns can transduce signals reversely into cells. We have no prior knowledge of the role played by any members of this family of kinases or their ligands in blood pressure (BP) regulation. In the present studies, we investigated the role of Efnb1 in vascular smooth muscle cell (VSMC) contractility and BP regulation. We revealed that reverse signaling through Efnb1 led to a reduction of RhoA activation and VSMC contractility in vitro. Consistent with this finding, ex vivo, there was an increase of RhoA activity accompanied by augmented myosin light chain phosphorylation in mesenteric arteries from mice with smooth muscle-specific conditional Efnb1 gene knock-out (KO). Small interfering RNA knockdown of Grip1, a molecule associated with the Efnb1 intracellular tail, partially eliminated the effect of Efnb1 on VSMC contractility and myosin light chain phosphorylation. In support of these in vitro and ex vivo results, Efnb1 KO mice on a high salt diet showed a statistically significant heightened increment of BP at multiple time points during stress compared with wild type littermates. Our results demonstrate that Efnb1 is a previously unknown negative regulator of VSMC contractility and BP and that it exerts such effects via reverse signaling through Grip1.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号