首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2355篇
  免费   146篇
  2024年   4篇
  2023年   18篇
  2022年   19篇
  2021年   77篇
  2020年   68篇
  2019年   69篇
  2018年   98篇
  2017年   78篇
  2016年   127篇
  2015年   184篇
  2014年   189篇
  2013年   190篇
  2012年   212篇
  2011年   223篇
  2010年   153篇
  2009年   108篇
  2008年   114篇
  2007年   112篇
  2006年   111篇
  2005年   75篇
  2004年   55篇
  2003年   52篇
  2002年   44篇
  2001年   17篇
  2000年   19篇
  1999年   18篇
  1998年   11篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   3篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1953年   1篇
排序方式: 共有2501条查询结果,搜索用时 953 毫秒
81.
82.
Hemozoin (Hz) is a heme crystal produced upon hemoglobin digestion as the main mechanism of heme disposal in several hematophagous organisms. Here, we show that, in the helminth Schistosoma mansoni, Hz formation occurs in extracellular lipid droplets (LDs). Transmission electron microscopy of adult worms revealed the presence of numerous electron-lucent round structures similar to LDs in gut lumen, where multicrystalline Hz assemblies were found associated to their surfaces. Female regurgitates promoted Hz formation in vitro in reactions partially inhibited by boiling. Fractionation of regurgitates showed that Hz crystallization activity was essentially concentrated on lower density fractions, which have small amounts of pre-formed Hz crystals, suggesting that hydrophilic-hydrophobic interfaces, and not Hz itself, play a key catalytic role in Hz formation in S. mansoni. Thus, these data demonstrate that LDs present in the gut lumen of S. mansoni support Hz formation possibly by allowing association of heme to the lipid-water interface of these structures.  相似文献   
83.
José J  Solferini VN 《Genetica》2007,130(1):73-82
Marine invertebrate populations usually show high levels of genetic variability that has frequently been associated with spatial and temporal environmental heterogeneity. One of the most heterogeneous marine environments is the intertidal zone, the habitat of Collisella subrugosa, the most widespread and abundant Brazilian limpet. C. subrugosa has planktonic larvae that can disperse over long distances, what can promote gene flow among shores, working against interpopulational differentiation. In this study we investigated the genetic variability and populational substructure of C. subrugosa through analysis of 24 allozyme loci in 14 samples (590 individuals) collected along 2,700 km of the Brazilian coast. The genetic variability was high ( and ), as expected for intertidal species. Genetic differentiation among samples was low (F ST = 0.03) what may reflect intensive gene flow associated with larval dispersal. However, we detected an isolation-by-distance pattern of population substructure in one sampled region. High levels of heterozygote deficiency were also observed for many loci in each sample. Alternative hypothesis are discussed, and the “breeding groups” is suggested to explain these pattern, indicating the main cause as environmental heterogeneity.  相似文献   
84.
The localized activation of circulating glucocorticoids in vivo by the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays a critical role in the development of the metabolic syndrome. However, the precise contribution of 11beta-HSD1 in the initiation of adipogenesis by inactive glucocorticoids is not fully understood. 3T3-L1 fibroblasts can be terminally differentiated to mature adipocytes in a glucocorticoid-dependent manner. Both inactive rodent dehydrocorticosterone and human cortisone were able to substitute for the synthetic glucocorticoid dexamethasone in 3T3-L1 adipogenesis, suggesting a potential role for 11beta-HSD1 in these effects. Differentiation of 3T3-L1 cells caused a strong increase in 11beta-HSD1 protein levels, which occurred late in the differentiation protocol. Reduction of 11beta-HSD1 activity in 3T3-L1 fibroblasts, achieved by pharmacological inhibition or adenovirally mediated delivery of short hairpin RNA constructs, specifically blocked the ability of inactive glucocorticoids to drive 3T3-L1 differentiation. However, even modest increases in exogenous 11beta-HSD1 expression in 3T3-L1 fibroblasts, to levels comparable with endogenous 11beta-HSD1 in differentiated 3T3-L1 adipocytes, were sufficient to block adipogenesis. Luciferase reporter assays indicated that overexpressed 11beta-HSD1 was catalyzing the inactivating dehydrogenase reaction, because the ability of both active and inactive glucocorticoids to activate the glucocorticoid receptor were largely suppressed. These results suggest that the temporal regulation of 11beta-HSD1 expression is tightly controlled in 3T3-L1 cells, so as to mediate the initiation of differentiation by inactive glucocorticoids and also to prevent the inhibitory activity of prematurely expressed 11beta-HSD1 during adipogenesis.  相似文献   
85.
Comparison of the three-dimensional structure of hyperthermophilic and mesophilic β-glycosidases shows differences in secondary structure composition. The enzymes from hyperthermophilic archaea have a significantly larger number of β-strands arranged in supernumerary β-sheets compared to mesophilic enzymes from bacteria and other organisms. Amino acid replacements designed to alter the structure of the supernumerary β-strands were introduced by site directed mutagenesis into the sequence encoding the β-glycosidase from Sulfolobus solfataricus. Most of the replacements caused almost complete loss of activity but some yielded enzyme variants whose activities were affected specifically at higher temperatures. Far-UV CD spectra recorded as a function of temperature for both wild type β-glycosidase and mutant V349G, one of the mutants with reduced activity at higher temperatures, were similar, showing that the protein structure of the mutant was stable at the highest temperatures assayed. The properties of mutant V349G show a difference between thermostability (stability of the protein structure at high temperatures) and thermophilicity (optimal activity at high temperatures).  相似文献   
86.
Paracoccidioides brasiliensis is an important fungal pathogen. The disease it causes, paracoccidioidomycosis (PCM), ranges from localized pulmonary infection to systemic processes that endanger the life of the patient. Paracoccidioides brasiliensis adhesion to host tissues contributes to its virulence, but we know relatively little about molecules and the molecular mechanisms governing fungal adhesion to mammalian cells. Triosephosphate isomerase (TPI: EC 5.3.1.1) of P. brasiliensis (PbTPI) is a fungal antigen characterized by microsequencing of peptides. The protein, which is predominantly expressed in the yeast parasitic phase, localizes at the cell wall and in the cytoplasmic compartment. TPI and the respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis to in vitro cultured epithelial cells. TPI binds preferentially to laminin, as determined by peptide inhibition assays. Collectively, these results suggest that TPI is required for interactions between P. brasiliensis and extracellular matrix molecules such as laminin and that this interaction may play an important role in the fungal adherence and invasion of host cells.  相似文献   
87.
88.
Economic Botany - We aim to evaluate whether socioeconomic factors influence the knowledge, use, preference, and consumption of firewood in a rural community in Northeast Brazil. We conducted...  相似文献   
89.
Economic Botany - Socioeconomic Factors and Cultural Changes Explain the Knowledge and Use of Ouricuri Palm (Syagrus coronata) by the Fulni–ô Indigenous People of Northeast...  相似文献   
90.
A sustainable society will have to largely refrain from the use of fossil carbon deposits. In such a regime, renewable electricity can be harvested as a primary source of energy. However, as for the synthesis of carbon‐based materials from bulk chemicals, an alternative is required. A sustainable approach towards this is the synthesis of commodity chemicals from CO2, water and sunlight. Multiple paths to achieve this have been designed and tested in the domains of chemistry and biology. In the latter, the use of both chemotrophic and phototrophic organisms has been advocated. ‘Direct conversion’ of CO2 and H2O, catalyzed by an oxyphototroph, has excellent prospects to become the most economically competitive of these transformations, because of the relative ease of scale‐up of this process. Significantly, for a wide range of energy and commodity products, a proof of principle via engineering of the corresponding production organism has been provided. In the optimization of a cyanobacterial production organism, a wide range of aspects has to be addressed. Of these, here we will put our focus on: (1) optimizing the (carbon) flux to the desired product; (2) increasing the genetic stability of the producing organism and (3) maximizing its energy conversion efficiency. Significant advances have been made on all these three aspects during the past 2 years and these will be discussed: (1) increasing the carbon partitioning to >50%; (2) aligning product formation with the growth of the cells and (3) expanding the photosynthetically active radiation region for oxygenic photosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号