首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3993篇
  免费   406篇
  国内免费   6篇
  2023年   29篇
  2022年   17篇
  2021年   119篇
  2020年   63篇
  2019年   69篇
  2018年   81篇
  2017年   77篇
  2016年   143篇
  2015年   191篇
  2014年   205篇
  2013年   215篇
  2012年   291篇
  2011年   283篇
  2010年   201篇
  2009年   160篇
  2008年   263篇
  2007年   237篇
  2006年   248篇
  2005年   217篇
  2004年   179篇
  2003年   185篇
  2002年   153篇
  2001年   46篇
  2000年   28篇
  1999年   39篇
  1998年   34篇
  1997年   22篇
  1996年   30篇
  1995年   34篇
  1994年   22篇
  1993年   19篇
  1992年   23篇
  1991年   26篇
  1990年   17篇
  1989年   16篇
  1988年   20篇
  1987年   12篇
  1986年   21篇
  1985年   17篇
  1984年   25篇
  1982年   20篇
  1981年   15篇
  1980年   26篇
  1978年   17篇
  1977年   19篇
  1976年   15篇
  1974年   20篇
  1973年   13篇
  1971年   13篇
  1970年   11篇
排序方式: 共有4405条查询结果,搜索用时 15 毫秒
991.
Epidemiological studies suggest that a moderate consumption of anthocyanins may be associated with protection against coronary heart disease. The main dietary sources of anthocyanins include red-coloured fruits and red wine. Although dietary anthocyanins comprise a diverse mixture of molecules, little is known how structural diversity relates to their bioavailability and biological function. The aim of the present study was to evaluate the absorption and metabolism of the 3-monoglucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin in humans and to examine both the effect of consuming a red wine extract on plasma antioxidant status and on monocyte chemoattractant protein 1 production in healthy human subjects. After a 12-h overnight fast, seven healthy volunteers received 12 g of an anthocyanin extract and provided 13 blood samples in the 24 h following the test meal. Furthermore, urine was collected during this 24-h period. Anthocyanins were detected in their intact form in both plasma and urine samples. Other anthocyanin metabolites could also be detected in plasma and urine and were identified as glucuronides of peonidin and malvidin. Anthocyanins and their metabolites appeared in plasma about 30 min after ingestion of the test meal and reached their maximum value around 1.6 h later for glucosides and 2.5 h for glucuronides. Total urinary excretion of red wine anthocyanins was 0.05+/-0.01% of the administered dose within 24 h. About 94% of the excreted anthocyanins was found in urine within 6 h. In spite of the low concentration of anthocyanins found in plasma, an increase in the antioxidant capacity and a decrease in MCP-1 circulating levels in plasma were observed.  相似文献   
992.
993.
The goal of this study was to review the impact of DNA sequence analyses on our understanding of Cariceae phylogeny, classification and evolution. To explore character evolution, 105 taxa from four different studies were included in an nrDNA ITS + ETS 1f analysis of all recognized genera (Carex, Cymophyllus, Kobresia, Schoenoxiphium, Uncinia) and Carex subgenera (Carex, Psyllophora, Vignea, Vigneastra). As in previous analyses, four major Cariceae clades were recovered: (1) a “Core Carex Clade” (subg. Carex, Vigneastra, Psyllophora p.p); (2) A “Vignea Clade” (subg. Vignea, Psyllophora p.p.); (3) a “Schoenoxiphium Clade” (Schoenoxiphium, subg. Psyllophora p.p.), and (4) a “Core Unispicate Clade” (Uncinia, Kobresia, subg. Psyllophora p.p.). All studies provide strong support (86–100% BS) for the Core Carex and Vignea Clades, but only weak to moderate support (<50%–78% BS) for the Core Unispicate and Schoenoxiphium Clades. The relationships of these groups are unresolved. Studies suggest that Carex is either paraphyletic with respect to all Cariceae genera or to all genera except Schoenoxiphium. Kobresia is a grade, but Uncinia and possibly Schoenoxiphium are monophyletic. The monotypic Cymophyllus is indistinct from Carex subg. Psyllophora species. Character analyses indicate that inflorescence proliferation and reduction have occurred in all major clades, and that the Cariceae’s unisexual flowers have evolved from perfect flowers. The ancestor to Cariceae possessed a multispicate inflorescence with cladoprophylls and female spikelets with tristigmatic gynoecia and closed utricles. This morphology is most similar to extant Carex subg. Carex species, which contradicts the nearly unanimous assumption that the highly compound inflorescences of Schoenoxiphium are primitive. Since taxonomic sampling and statistical support for phylogenies have generally been poor, we advocate the temporary maintenance of the four traditional Carex subgenera with androgynous unispicate species placed within subg. Psyllophora and dioecious and gynaecandrous unispicate species distributed amongst subgenera Carex and Vignea. A collective effort focused on developing new nuclear markers, on increasing taxonomic and geographic sampling, and on studying development within the context of phylogeny, is needed to develop a phylogenetic classification of Cariceae.  相似文献   
994.
A novel 47 amino acid extension at the N-terminus of the SphS histidine kinase has been identified in the cyanobacterium Synechocystis sp. PCC 6803. Here, we demonstrate this region is required for activation of the SphS-SphR phosphate-sensing two-component system under phosphate-limiting conditions and mutants lacking this extension do not show constitutive alkaline phosphatase activity when the negative regulator SphU is inactivated. We have also identified a putative membrane-associated domain within this region involved in control of the Pho regulon. In addition, there are two high-affinity ABC-type phosphate uptake systems in this organism. Our results demonstrate that the Pst1 system, but not the Pst2 system, is required for suppression of the Pho regulon under phosphate-sufficient conditions. Deletion of the pst1 operon and disruption of the membrane-spanning domain may both target the same control mechanism since constitutive alkaline phosphatase activity is similar in the double and single mutants.  相似文献   
995.
Tight junctions as targets of infectious agents   总被引:1,自引:0,他引:1  
The epithelial barrier is a critical border that segregates luminal material from entering tissues. Essential components of this epithelial fence are physical intercellular structures termed tight junctions. These junctions use a variety of transmembrane proteins coupled with cytoplasmic adaptors, and the actin cytoskeleton, to attach adjacent cells together thereby forming intercellular seals. Breaching of this barrier has profound effects on human health and disease, as barrier deficiencies have been linked with the onset of inflammation, diarrhea generation and pathogenic effects. Although tight junctions efficiently restrict most microbes from penetrating into deeper tissues and contain the microbiota, some pathogens have developed specific strategies to alter or disrupt these structures as part of their pathogenesis, resulting in either pathogen penetration, or other consequences such as diarrhea. Understanding the strategies that microorganisms use to commandeer the functions of tight junctions is an active area of research in microbial pathogenesis. In this review we highlight and overview the tactics bacteria and viruses use to alter tight junctions during disease. Additionally, these studies have identified novel tight junction protein functions by using pathogens and their virulence factors as tools to study the cell biology of junctional structures.  相似文献   
996.
Conjugative plasmids encode antibiotic resistance determinants or toxin genes in the anaerobic pathogen Clostridium perfringens. The paradigm conjugative plasmid in this bacterium is pCW3, a 47-kb tetracycline resistance plasmid that encodes the unique tcp transfer locus. The tcp locus consists of 11 genes, intP and tcpA-tcpJ, at least three of which, tcpA, tcpF, and tcpH, are essential for the conjugative transfer of pCW3. In this study we examined protein-protein interactions involving TcpA, the putative coupling protein. Use of a bacterial two-hybrid system identified interactions between TcpA and TcpC, TcpG, and TcpH. This analysis also demonstrated TcpA, TcpC, and TcpG self-interactions, which were confirmed by chemical cross-linking studies. Examination of a series of deletion and site-directed derivatives of TcpA identified the domains and motifs required for these interactions. Based on these results, we have constructed a model for this unique conjugative transfer apparatus.Conjugation systems are important contributors to the dissemination of antibiotic resistance determinants and virulence factors. Extensive analysis of conjugative plasmids from gram-negative bacteria has led to the elucidation of a general mechanism of conjugative transfer (10, 22). In this process, the transferred DNA is processed by components of a relaxosome complex. Specifically, the DNA is nicked at the origin of transfer (oriT) by a relaxase, which remains covalently coupled to the transferred DNA strand. The single-stranded DNA complex then interacts with the coupling protein, a DNA-dependent ATPase that provides the energy to actively pump the DNA through the mating pair formation (Mpf) complex into the recipient cell (36). The coupling protein interacts with both DNA processing proteins and components of the Mpf complex (1, 4, 12, 35, 38). These interactions have been demonstrated using bacterial and yeast two-hybrid approaches as well as gel filtration, pull-down, and coimmunoprecipitation studies.The mechanism of conjugative transfer has yet to be precisely determined for conjugative plasmids from gram-positive bacteria although bioinformatics analysis has identified similar gene arrangements and conservation of gene sequences within the transfer regions encoded on conjugative plasmids identified from strains of streptococcal, staphylococcal, enterococcal, and lactococcal origin (15). It was proposed that gram-positive and gram-negative conjugation systems utilize a similar transfer mechanism (15).In the anaerobic pathogen Clostridium perfringens conjugative plasmids have been shown to encode antibiotic resistance genes or extracellular toxins (3, 8, 9, 18). Although the contribution of conjugation to disease dissemination has not been systematically evaluated, it has been proposed that transfer of the C. perfringens enterotoxin plasmid pCPF4969 to normal flora isolates of C. perfringens may contribute to the severity of disease caused by non-food-borne isolates of C. perfringens (9).The prototype conjugative plasmid in C. perfringens is the 47-kb tetracycline resistance plasmid, pCW3. The complete sequence of pCW3 has been determined, and its unique replication protein and conjugation locus have been identified (8). Bioinformatics analysis of this C. perfringens tcp conjugation locus identified several proteins with limited similarity to proteins encoded within the transfer region of the conjugative transposon, Tn916 (8). The role of the tcp locus in the transfer of pCW3 has been confirmed by isolation of independent tcpA, tcpF, and tcpH mutants and subsequent complementation studies (8, 29). Since the region that encompasses the tcp locus is conserved in all conjugative plasmids from C. perfringens (2, 3, 8, 9, 18, 27) and since divergent tcpA homologues can complement a pCW3tcpA mutant (29), it appears that the conjugative transfer of both antibiotic resistance and toxin plasmids from this bacterium utilizes a common but poorly understood mechanism. Note that the C. perfringens tcp conjugation locus is different from the transfer regions of conjugative plasmids from other gram-positive bacteria.We have recently shown that the essential conjugation protein TcpH, a putative membrane-associated Mpf complex component, is localized to the poles of C. perfringens cells, as is another essential conjugation protein, TcpF (37). TcpH has also been shown to interact with itself and with the pCW3-encoded TcpC protein (37). In this study we have focused on the essential conjugation protein TcpA. Since TcpA encodes an FtsK/SpoIIIE domain found in DNA translocases (8), it is proposed that TcpA is involved in the movement of DNA during conjugative transfer, fulfilling a role equivalent to that of coupling proteins in other conjugation systems. Like such proteins, TcpA encodes two N-terminal transmembrane domains (TMDs) and a C-terminal cytoplasmic region that contains three motifs predicted to be involved in ATP binding and hydrolysis (8). Our previous studies revealed that the conserved motifs, motif I (Walker A box), motif II (Walker B box), and motif III (RAAG box), are essential for the function of TcpA. The C-terminal 61 amino acids (aa), though not essential for TcpA function, were shown to be important for efficient transfer of pCW3, as were the putative TMDs (29).To further investigate pCW3 transfer and the role of TcpA in this process, we have used bacterial two-hybrid analysis to examine protein-protein interactions involving TcpA. Using this system, interactions were observed between TcpA and itself, TcpC, TcpG, and TcpH. In addition, TcpC and TcpG were also found to self-interact. By combining these data with other data generated in this laboratory (37), we have constructed a model for the conjugative transfer of pCW3.  相似文献   
997.
In this study, we report the DNA sequence and biological analysis of a mycobacterial mercury resistance operon encoding a novel Hg2+ transporter. MerH was found to transport mercuric ions in Escherichia coli via a pair of essential cysteine residues but only when coexpressed with the mercuric reductase.  相似文献   
998.
Campylobacter infections have been reported at prevalences ranging from 2 to 50% in a range of wild bird species, although there have been few studies that have investigated the molecular epidemiology of Campylobacter spp. Consequently, whether wild birds are a source of infection in humans or domestic livestock or are mainly recipients of domestic animal strains and whether separate cycles of infection occur remain unknown. To address these questions, serial cross-sectional surveys of wild bird populations in northern England were carried out over a 2-year period. Fecal samples were collected from 2,084 wild bird individuals and screened for the presence of Campylobacter spp. A total of 56 isolates were recovered from 29 birds sampled at 15 of 167 diverse locales. Campylobacter jejuni, Campylobacter lari, and Campylobacter coli were detected by PCR, and the prevalences of different Campylobacter spp. in different avian families ranged from 0% to 33%. Characterization of 36 C. jejuni isolates by multilocus sequence typing revealed that wild birds carry both livestock-associated and unique strains of C. jejuni. However, the apparent absence of unique wild bird strains of C. jejuni in livestock suggests that the direction of infection is predominantly from livestock to wild birds. C. lari was detected mainly in wild birds sampled in an estuarine or coastal habitat. Fifteen C. lari isolates were analyzed by macrorestriction pulsed-field gel electrophoresis, which revealed genetically diverse populations of C. lari in Eurasian oystercatchers (Haematopus ostralegus) and clonal populations in magpies (Pica pica).Infection with Campylobacter spp. continues to be the leading cause of human infectious intestinal disease in the United Kingdom and has a significant economic impact (39). Consequently, there is a continuing effort to identify effective control methods. The majority of human infections (∼90%) are caused by Campylobacter jejuni subsp. jejuni (46). Other Campylobacter species, including Campylobacter coli and Campylobacter lari, can also cause enteritis in humans, but their prevalence is lower. Most C. jejuni infections are believed to result from consumption of contaminated food, including poultry meat (27, 40), red meat (52), and milk (13), which is thought to be contaminated primarily by feces. It is well established that most livestock species, including poultry, ruminants, and pigs, carry C. jejuni asymptomatically (27), making control at the farm level difficult. However, the epidemiology of C. jejuni cannot be explained solely by food-borne exposure; C. jejuni has also been isolated from a range of environmental samples, including samples of soil, water, sand, and the feces of a number of wildlife species, including wild birds (1-3). However, the role that non-food-borne exposure plays in the epidemiology of C. jejuni is currently not well defined.High prevalences of Campylobacter species infections have been found in a wide range of wild bird species, although there is great variation between taxa (2, 4, 7, 16, 35, 47, 48). Given their ability to fly long distances and their ubiquity, wild birds have the potential to play an important role in the epidemiology and evolution of Campylobacter spp. However, whether wild birds are a source of infection for humans or domestic livestock or are mainly recipients of domestic animal strains or, indeed, whether separate cycles of infection occur remain unknown. These questions remain unanswered in part because investigations of the epidemiology of Campylobacter spp. have been complicated by their high inter- and intraspecies genetic diversity (6).The methods that have been routinely used to characterize Campylobacter isolates are restricted due to genomic instability in Campylobacter populations (10, 38, 45). Multilocus sequence typing (MLST) is a method that has the advantage of being objective since it is sequence based, which allows comparison of isolates from different laboratories and accurate determination of relationships between isolates from diverse sources (11). MLST studies of C. jejuni in farm animals and the environment, including wildlife, suggest that some strains may be associated with particular host groups (6, 10, 15, 30). However, in the same studies other strains were found to occur in several host species or habitats. Few studies have investigated the molecular epidemiology of Campylobacter infection in wild bird populations using MLST, and because only a relatively small number of isolates from wild birds have been characterized by MLST, conclusions have not been drawn yet about how wild bird isolates fit into the overall phylogenetic scheme or whether wild birds act as reservoirs, amplifiers, or merely indicators of infection of domestic animals with zoonotic genotypes.In the current study a large cross-sectional survey of wild bird populations in northern England was undertaken to investigate the epidemiology of Campylobacter infection. Previous studies that have focused on the epidemiology of Campylobacter spp. solely in wild birds have investigated either a narrow range of taxonomic groups (2, 5, 17, 23, 29, 33, 43, 50) or wild birds from a limited range of habitats (18, 25, 48). Studies that have investigated a broad range of wild bird species have used Campylobacter characterization techniques that do not allow conclusions about possible host associations to be drawn or comparison of the genetic diversity of isolates between studies (21, 25, 34, 47, 53). Therefore, the aims of this study were (i) to determine the host range and prevalence of Campylobacter spp. in a wild bird population and (ii) through molecular characterization of isolates to determine whether wild birds were a likely source of infection in humans or domestic livestock and whether separate cycles of infection with host-adapted strains of Campylobacter spp. were maintained in the wild bird population.  相似文献   
999.
A total of 88 bacterial strains were isolated from six Andean lakes situated at altitudes ranging from 3,400 to 4,600 m above sea level: L. Aparejos (4,200 m), L. Negra (4,400 m), L. Verde (4,460 m), L. Azul (4,400 m), L. Vilama (4,600 m), and Salina Grande (3,400 m). Salinity ranged from 0.4 to 117 ppm. General diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis. From the excised DGGE bands, 182 bacterial sequences of good quality were obtained. Gammaproteobacteria and Cytophaga/Flavobacterium/Bacteroides (CFB) were the most abundant phylogenetic groups with 42% and 18% of identified bands, respectively. The isolated strains were identified by sequence analysis. Isolated bacteria were subjected to five different UV-B exposure times: 0.5, 3, 6, 12, and 24 h. Afterwards, growth of each isolate was monitored and resistance was classified according to the growth pattern. A wide interspecific variation among the 88 isolates was observed. Medium and highly resistant strains accounted for 43.2% and 28.4% of the isolates, respectively, and only 28.4% was sensitive. Resistance to solar radiation was equally distributed among the isolates from the different lakes regardless of the salinity of the lakes and pigmentation of isolates. Of the highly resistant isolates, 44.5% belonged to gammaproteobacteria, 33.3% to betaproteobacteria, 40% to alphaproteobacteria, 50% to CFB, and among gram-positive organisms, 33.3% were HGC and 44.5% were Firmicutes. Most resistant strains belonged to genera like Exiguobaceterium sp., Acinetobacter sp., Bacillus sp., Micrococcus sp., Pseudomonas sp., Sphyngomonas sp., Staphylococcus sp., and Stenotrophomonas sp. The current study provides further evidence that gammaproteobacteria are the most abundant and the most UV-B-resistant phylogenetic group in Andean lakes and that UV resistance in bacteria isolated from these environments do not depend on pigmentation and tolerance to salinity.  相似文献   
1000.
The two major apolipoproteins associated with human and chimpanzee (Pan troglodytes) high density lipoproteins (HDL) are apoA-I and dimeric apoA-II. Although humans are closely related to great apes, apolipoprotein data do not exist for bonobos (Pan paniscus), western lowland gorillas (Gorilla gorilla gorilla) and the Sumatran orangutans (Pongo abelii). In the absence of any data, other great apes simply have been assumed to have dimeric apoA-II while other primates and most other mammals have been shown to have monomeric apoA-II. Using mass spectrometry, we have measured the molecular masses of apoA-I and apoA-II associated with the HDL of these great apes. Each was observed to have dimeric apoA-II. Being phylogenetically related, one would anticipate these apolipoproteins having a high percentage of invariant sequences when compared with human apolipoproteins. However, the orangutan, which diverged from the human lineage between 16 and 21 million years ago, had an apoA-II with the lowest monomeric mass, 8031.3 Da and the highest apoA-I value, 28,311.7 Da, currently reported for various mammals. Interestingly, the gorilla that diverged from the lineage leading to the human–chimpanzee branch after the orangutan had almost identical mass values to those reported for human apoA-I and apoA-II. But chimpanzee and the bonobo that diverged more recently had identical apoA-II mass values that were slightly larger than reported for the human apolipoprotein. The chimpanzee A-I mass values were very close to those of humans; however, the bonobo had values intermediate to the molecular masses of orangutan and the other great apes. With the already existing genomic data for chimpanzee and the recent entries for the orangutan and gorilla, we were able to demonstrate a close agreement between our mass spectral data and the calculated molecular weights determined from the predicted primary sequences of the respective apolipoproteins. Post-translational modification of these apolipoproteins, involving truncation and oxidation of methionine, are also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号