首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1978年   1篇
  1960年   1篇
排序方式: 共有65条查询结果,搜索用时 93 毫秒
41.
42.
Reverse-mode activity of the Na(+)/Ca(2+) exchanger (NCX) has been previously shown to play a prominent role in excitation-contraction coupling in the neonatal rabbit heart, where we have proposed that a restricted subsarcolemmal domain allows a Na(+) current to cause an elevation in the Na(+) concentration sufficiently large to bring Ca(2+) into the myocyte through reverse-mode NCX. In the present study, we tested the hypothesis that there is an overlapping expression and distribution of voltage-gated Na(+) (Na(v)) channel isoforms and the NCX in the neonatal heart. For this purpose, Western blot analysis, immunocytochemistry, confocal microscopy, and image analyses were used. Here, we report the robust expression of skeletal Na(v)1.4 and cardiac Na(v)1.5 in neonatal myocytes. Both isoforms colocalized with the NCX, and Na(v)1.5-NCX colocalization was not statistically different from Na(v)1.4-NCX colocalization in the neonatal group. Western blot analysis also showed that Na(v)1.4 expression decreased by sixfold in the adult (P < 0.01) and Na(v)1.1 expression decreased by ninefold (P < 0.01), whereas Na(v)1.5 expression did not change. Although Na(v)1.4 underwent large changes in expression levels, the Na(v)1.4-NCX colocalization relationship did not change with age. In contrast, Na(v)1.5-NCX colocalization decreased ~50% with development. Distance analysis indicated that the decrease in Na(v)1.5-NCX colocalization occurs due to a statistically significant increase in separation distances between Na(v)1.5 and NCX objects. Taken together, the robust expression of both Na(v)1.4 and Na(v)1.5 isoforms and their colocalization with the NCX in the neonatal heart provides structural support for Na(+) current-induced Ca(2+) entry through reverse-mode NCX. In contrast, this mechanism is likely less efficient in the adult heart because the expression of Na(v)1.4 and NCX is lower and the separation distance between Na(v)1.5 and NCX is larger.  相似文献   
43.
The Ca2+ binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca2+ binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca2+ affinity by 27% in the steady-state measurement and increased the Ca2+ dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca2+ sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca2+ sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca2+ sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca2+ sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent.  相似文献   
44.
Collection of tissue and subsequent isolation of genomic DNA from mature tree species often proves difficult. DNA extraction from needles, leaves, or buds is recommended in many protocols. Collecting these tissues from mature trees generally requires the use of firearms or climbing if sampling is to be nondestructive. As a result, sample collection is a major expense of many tree-based projects. Tree (and plant) tissues generally contain large amounts of polysaccharides and phenolic compounds that are difficult to separate from DNA. Many methods aim to overcom these problems, with most involving extraction in buffers containing the nonionic detergent cetyltrimethyl-ammonium bromide (CTAB), followed by numerous steps to clean contaminants from the DNA, using organic solvents and differential salt precipitation. These steps are time-consuming, such that isolation of DNA becomes the bottleneck in many molecular studies. This paper presents a new, efficient, cambium collection method for tree species and a DNA extraction protocol based on that of Doyle and Doyle (1987), with follow-up purification using the Wizard nuclei lysis and protein precipitation solutions (Promega). Results show a significant improvement in yield and DNA purity compared with other published methods, with consistently high yields of pure genomic DNA and high sample throughput. The relatively low cost per extraction, no requirement for use of liquid nitrogen, no requirement for freezer storage, and long-term sample stability after collection are important additional benefits.  相似文献   
45.
Long QT interval syndrome (LQTS) type 1 (LQT1) has been reported to arise from mutations in the S3 domain of KCNQ1, but none of the seven S3 mutations in the literature have been characterized with respect to trafficking or biophysical deficiencies. Surface channel expression was studied using a proteinase K assay for KCNQ1 D202H/N, I204F/M, V205M, S209F, and V215M coexpressed with KCNE1 in mammalian cells. In each case, the majority of synthesized channel was found at the surface, but mutant IKs current density at +100 mV was reduced significantly for S209F, which showed ∼75% reduction over wild type (WT). All mutants except S209F showed positively shifted V1/2’s of activation and slowed channel activation compared with WT (V1/2 = +17.7 ± 2.4 mV and τactivation of 729 ms at +20 mV; n = 18). Deactivation was also accelerated in all mutants versus WT (126 ± 8 ms at −50 mV; n = 27), and these changes led to marked loss of repolarizing currents during action potential clamps at 2 and 4 Hz, except again S209F. KCNQ1 models localize these naturally occurring S3 mutants to the surface of the helices facing the other voltage sensor transmembrane domains and highlight inter-residue interactions involved in activation gating. V207M, currently classified as a polymorphism and facing lipid in the model, was indistinguishable from WT IKs. We conclude that S3 mutants of KCNQ1 cause LQTS predominantly through biophysical effects on the gating of IKs, but some mutants also show protein stability/trafficking defects, which explains why the kinetic gain-of-function mutation S209F causes LQT1.  相似文献   
46.
The cardiacNa+/Ca2+ exchanger (NCX), an importantregulator of cytosolic Ca2+ concentration in contractionand relaxation, has been shown in trout heart sarcolemmal vesicles tohave high activity at 7°C relative to its mammalian isoform. Thisunique property is likely due to differences in protein structure. Inthis study, outward NCX currents (INCX) of thewild-type trout (NCX-TR1.0) and canine (NCX 1.1) exchangers expressedin oocytes were measured to explore the potential contributions ofregulatory vs. transport mechanisms to this observation. cRNA wastranscribed in vitro from both wild-type cDNA and was injected intoXenopus oocytes. INCX of NCX-TR1.0 and NCX1.1 were measured after 3-4 days over a temperature range of 7-30°C using the giant excised patch technique. TheINCX for both isoforms exhibitedNa+-dependent inactivation and Ca2+-dependentpositive regulation. The INCX of NCX1.1exhibited typical mammalian temperature sensitivities withQ10 values of 2.4 and 2.6 for peak and steady-statecurrents, respectively. However, the INCX ofNCX-TR1.0 was relatively temperature insensitive with Q10values of 1.2 and 1.1 for peak and steady-state currents, respectively.INCX current decay was fit with a singleexponential, and the resultant rate constant of inactivation () wasdetermined as a function of temperature. As expected,  decreasedmonotonically with temperature for both isoforms. Although  wassignificantly greater in NCX1.1 compared with NCX-TR1.0 at alltemperatures, the effect of temperature on  was not differentbetween the two isoforms. These data suggest that thedisparities in INCX temperature dependencebetween these two exchanger isoforms are unlikely due to differences intheir inactivation kinetics. In addition, similar differences intemperature dependence were observed in both isoforms after-chymotrypsin treatment that renders the exchanger in a deregulatedstate. These data suggest that the differences in INCX temperature dependence between the twoisoforms are not due to potential disparities in either theINCX regulatory mechanisms or structuraldifferences in the cytoplasmic loop but are likely predicated ondifferences within the transmembrane segments.

  相似文献   
47.
Striated muscle contraction is initiated when troponin C (TnC) binds Ca(2+), which activates actinomyosin ATPase. We investigated (i) the variation between cardiac TnC (cTnC) primary structure within teleost fish and (ii) the pattern of TnC expression in response to temperature acclimation. There were few differences between rainbow trout (Oncorhynchus mykiss), yellowfin tuna (Thunnus albacares), yellow perch (Perca flavescens), goldfish (Carassius auratus), white sucker (Catostomus commersoni), and icefish (Chaenocephalus aceratus) in cTnC amino acid sequence. No variation existed in the regulatory Ca(2+)-binding site (site 2). The site 3 and 4 substitutions were limited to residues not directly involved in Ca(2+) coordination. Fish cTnC primary structure was highly conserved between species (93%-98%) and collectively divergent from the highly conserved sequence seen in birds and mammals. Northern blots and polymerase chain reaction showed that thermal acclimation of trout (3 degrees, 18 degrees C) did not alter the TnC isoform pattern. While cardiac and white muscle had the expected isoforms-cTnC and fast troponin C (fTnC), respectively-red muscle unexpectedly expressed primarily ftnC. Cold acclimation did not alter myofibrillar ATPase Ca(2+) sensitivity, but maximal velocity increased by 60%. We found no evidence that TnC variants, arising between species or in response to thermal acclimation, play a major role in mitigating the effects of temperature on contractility of the adult fish heart.  相似文献   
48.
Molecular Breeding - Improvement of grain protein content (GPC), loaf volume, and resistance to rusts was achieved in 11 Indian wheat cultivars that are widely grown in four different agro-climatic...  相似文献   
49.
Cellulose microfibrils are the major structural component of plant secondary cell walls. Their arrangement in plant primary cell walls, and its consequent influence on cell expansion and cellular morphology, is directed by cortical microtubules; cylindrical protein filaments composed of heterodimers of alpha- and beta-tubulin. In secondary cell walls of woody plant stems the orientation of cellulose microfibrils influences the strength and flexibility of wood, providing the physical support that has been instrumental in vascular plant colonization of the troposphere. Here we show that a Eucalyptus grandisbeta-tubulin gene (EgrTUB1) is involved in determining the orientation of cellulose microfibrils in plant secondary fibre cell walls. This finding is based on RNA expression studies in mature trees, where we identified and isolated EgrTUB1 as a candidate for association with wood-fibre formation, and on the analysis of somatically derived transgenic wood sectors in Eucalyptus. We show that cellulose microfibril angle (MFA) is correlated with EgrTUB1 expression, and that MFA was significantly altered as a consequence of stable transformation with EgrTUB1. Our findings present an important step towards the production of fibres with altered tensile strength, stiffness and elastic properties, and shed light on one of the molecular mechanisms that has enabled trees to dominate terrestrial ecosystems.  相似文献   
50.
Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here, we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target‐capture method was used to detect genome‐wide polymorphisms in a panel of 174 flowering time‐related genes, chosen based on prior knowledge from barley, rice and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号