首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   20篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   9篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   13篇
  2013年   16篇
  2012年   23篇
  2011年   14篇
  2010年   10篇
  2009年   14篇
  2008年   22篇
  2007年   15篇
  2006年   16篇
  2005年   20篇
  2004年   25篇
  2003年   19篇
  2002年   11篇
  2001年   3篇
  2000年   3篇
  1999年   8篇
  1998年   9篇
  1997年   11篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
  1973年   1篇
  1972年   4篇
  1970年   2篇
  1968年   3篇
  1967年   2篇
排序方式: 共有384条查询结果,搜索用时 234 毫秒
51.
Summary The histochemical (iron, lipopigments, acid phosphatase, leucine aminopeptidase) and cytologic (lysosomes) changes occuring during pregnancy, lactation and involution of mouse, rat, rabbit, guinea-pig mammary glands are studied by light microscopy and electron microscopy.In all the animals examined, the mammary epithelium has an intracellular digestive system which is adapted to subserve two functions. The first one is the segregation of cytoplasmic components which often precedes cellular involution. The second one is the regulation of secretory processes in the non lactating glands. This digestion of endogenous materials results in the formation of various lytic bodies: dense bodies sometimes containing ferritin, vacuolated dense bodies with membranous residues, autophagic vacuoles. The lysosomes can give large complex dense bodies like lipofuscin pigments with or without ferritin.Leucine aminopeptidase which always disappears in the mouse mammary epithelium during lactation is not present in rat, rabbit, guinea-pig mammary epithelium. In these species only the vascular tissue contains the enzyme. This observation indicates that leucine aminopeptidase does not take care of the overproduction of secretory products in the non-lactating glands.Acid phosphatase is concentrated in secretory granules and in lytic bodies: multivesicular bodies, dense bodies with ferritin, vacuolated dense bodies, lipopigments. This enzyme constitutes probably a mechanism for controlling and triggering the destruction of the secretory material with no active elimination.The iron of the mammary epithelium appears in virgin mice older than 30 weeks and in mice, rats, rabbits, guinea-pigs during glandular cells involution. This is a catabolic iron located in lysosomes. Its amount depends upon the iron content of the milk and upon the competitive secretory and catabolic activities of the glandular cells. An explanation of iron disappearance during a second pregnancy and lactation is discussed.  相似文献   
52.
53.
54.
55.
56.
57.
Monocarboxylic acids with aliphatic chains were found to be mixed inhibitors of chicken liver L-2-hydroxyacid oxidase A when L-2-hydroxy-4-methylthiobutanoic acid was used as the substrate. The finding that the binding affinity of the enzyme for monocarboxylic acids was directly proportional to the number of carbon atoms in the chain strongly suggests that in addition to the electrostatic interaction due to the carboxyl moiety, hydrophobic forces may also be involved in the binding affinity of monocarboxylic acids to the enzyme's active site. Oxalate, a dicarboxylic acid, also resulted in a mixed-type inhibition of chicken liver L-2-hydroxyacid oxidase A, and, surprisingly, its binding affinity to the enzyme was found to be quite high as compared with monocarboxylic acids. This is probably due to the fact that the two carboxyl groups of oxalate give rise to electrostatic interactions with the positively charged side chains of two adjacent residues in the polypeptide chain. The inhibitory effects of other dicarboxylic acids was found to decrease as the number of carbon atoms in the chain increased. Oxamate was found however to be a novel type of potent inhibitor of the enzyme. All in all, these kinetic studies and the amino acid sequence determination in the active site region after limited proteolysis of the polypeptide chain definitely establish that chicken liver NADH/FMN containing L-2-hydroxyacid oxidase A is a member of the FMN-dependent α-hydroxyacid oxidizing enzyme family.  相似文献   
58.
Summary This work deals with the ability of phage 80 to provide defective mutants of with their missing functions. Functions Involved in Recombination. As shown by others, the Int mechanism of 80 cannot excise prophage . However, 80 efficiently excises recombinants from tandem dilysogens, using its Ter mechanism. Likewise, the nonspecific mechanism Red is interchangeable between 80 and . Maturation of DNA by 80. The Ter recombinants excised by 80 from tandem dilysogens are packaged into a 80 protein coat. This contrasts with the fact, already mentionned by Dove, that 80 is extremely inefficient for packaging phage superinfecting a -lysogen. The latter result is also found when the helper phage is a hybrid with the left arm of (80hy4 or 80hy41 — see Fig. 1). However, the maturation of the superinfecting is much more efficient if the 80hy used as a helper has the att-N region of (like 80hy1). Conversely a with the att-N region of 80 (hy6 — see Fig. 1) is packaged more efficiently by 80 or 80hy4 than by 80hy1. It is suggested that the maturation of chromosome superinfecting an immune cell requires a recombination with the helper phage. Vegetative Functions. Among the replicative functoons O and P, the latter only can be supplied by 80. That N mutants are efficiently helped by 80 does not tell that 80 provides the defective with an active N product; the chromosomes are simply packaged into a 80 coat. This shows that 80 is unable to switch on the late genes of . That neither 80 nor any of the 80hy tested can provide an active N product is shown in a more direct way by their complete failure to help N -r14; this phage carries a polar mutation which makes the expression of genes O and P entirely N-dependant. The maturation of a N - by 80 contrasts with the fact that mutants affected in late genes (A, F or H) are not efficiently helped by 80. This suggests that the products coded by these genes are not interchangeable between 80 and , and that packaging of DNA into 80 coats is possible but inhibited when late proteins are present in the cell. Activation of the Late Genes. Among the im 80 h + hybrids tested, only 80hy41 is able to switch on the late genes of a N defective mutant. This hybrid differs from the other hybrids studied here, by the fact that it has the Q-S-R region of (see Fig. 1). The results are consistant with the view that the product of Q gene is sufficient for activating the late genes of a DNA. N would thus control the expression of late genes only indirectly by controlling the expression of gene Q (Couturier & Dambly have independantly reached the same conclusion, 1970). Furthermore the failure of 80 and of the 80hy1 and 80hy4 to activate the late genes of would imply that these phages are unable to provide an Q product active on the chromosome Reciprocally, switches on the late genes of prophage 80hy41, but not of prophages 80hy1 and 80hy4. This suggests that the initiation of late genes expression takes place at a main specific site located in the Q-S-R region of the chromosome. The expression of the late genes would thus be sequential, and proceed through the left arm only when steaky ends cohere. Similar conclusions were reached independantly by Toussaint (1969) and by Herskowitz and Signer (1970).

Ce travail a été réalisé dans le cadre du contrat d'association Euratom-U. L. B. 007-61-10 ABIB et avec l'aide du Fonds de la Recherche Fondamentale Collective.  相似文献   
59.
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus   总被引:4,自引:0,他引:4  
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.  相似文献   
60.
A new source for the production of bioactive glucuronic acid oligosaccharides (GlcUAOs) from the depolymerization of green seaweed Ulva lactuca glucuronan (Algal glucuronan) has been investigated. Algal glucuronan purification was optimized by the acidic precipitation method which allowed us to separate the polysaccharide mixture extracted from the cell wall of Ulva lactuca using hot water containing sodium oxalate. A series of the GlcUAOs were obtained by enzyme degradation of algal glucuronan with a glucuronan lyase (GL) isolated from Trichoderma strain. The putative bioactive GlcUAOs generated were then purified by size-exclusion chromatography in gram quantity and characterized by 1H/13C NMR spectroscopy and ESI-Q/TOF-mass spectrometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号