首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3362篇
  免费   344篇
  国内免费   2篇
  2023年   20篇
  2022年   40篇
  2021年   86篇
  2020年   52篇
  2019年   65篇
  2018年   62篇
  2017年   53篇
  2016年   94篇
  2015年   149篇
  2014年   162篇
  2013年   175篇
  2012年   223篇
  2011年   251篇
  2010年   124篇
  2009年   107篇
  2008年   171篇
  2007年   160篇
  2006年   134篇
  2005年   128篇
  2004年   93篇
  2003年   104篇
  2002年   108篇
  2001年   74篇
  2000年   69篇
  1999年   78篇
  1998年   31篇
  1997年   26篇
  1996年   28篇
  1995年   20篇
  1994年   25篇
  1992年   47篇
  1991年   35篇
  1990年   36篇
  1989年   37篇
  1988年   32篇
  1987年   27篇
  1986年   29篇
  1985年   39篇
  1984年   21篇
  1983年   30篇
  1982年   29篇
  1981年   21篇
  1980年   21篇
  1979年   26篇
  1978年   19篇
  1977年   21篇
  1973年   24篇
  1972年   24篇
  1970年   21篇
  1969年   18篇
排序方式: 共有3708条查询结果,搜索用时 15 毫秒
991.
The availability of multiple complete genome sequences from the same species can facilitate attempts to systematically address basic questions in genome evolution. We refer to such efforts as "microevolutionary genomics". We report the results of comparative analyses of complete intraspecific genome (and proteome) sequences from four bacterial species--Chlamydophila pneumoniae, Escherichia coli, Helicobacter pylori and Neisseria meningitidis. Comparisons of average synonymous (K(s)) and nonsynonymous (K(a)) substitution rates were used to assess the influence of various biological factors on the rate of protein evolution. For example, E. coli experiences the most intense purifying selection of the species analyzed, and this may be due to the relatively larger population size of this species. In addition, essential genes were shown to be more evolutionarily conserved than nonessential genes in E. coli and duplicated genes have higher rates of evolution than unique genes for all species studied except C. pneumoniae. Different functional categories of genes were shown to evolve at significantly different rates emphasizing the role of category-specific functional constraints in determining evolutionary rates. Finally, functionally characterized genes tend to be conserved between strains, while uncharacterized genes are over-represented among the unique, strain-specific genes. This suggests the possibility that nonessential genes are responsible for driving the evolutionary diversification between strains.  相似文献   
992.
The red-backed fairy-wren is a socially monogamous passerine bird which exhibits two distinct types of breeding male, bright males that breed in bright red and black plumage and dull males that breed in dull brown plumage. Most males spend their first potential breeding season in dull plumage and subsequent breeding seasons in bright plumage, but a relatively small proportion of males develop bright plumage in their first breeding season. This study quantifies morphology, behavior, and reproductive success of dull and bright males to assess the adaptive costs and benefits of bright plumage while controlling for age. Older bright males (two years of age or older) attempted to increase their reproductive success via copulations with extrapair females, whereas younger (one-year old) bright males and dull males did not. Thus, older bright males spent less time on their own territories, intruded on neighboring groups with fertile females more frequently, gave more courtship displays, and had larger sperm storage organs than did younger bright males and dull males. Microsatellite analyses of paternity indicate that the red-backed fairy-wren has extremely high levels of sexual promiscuity, and that older bright males had higher within-brood paternity than dull males or younger bright males. Regardless of age, bright males were more attractive to females in controlled mate choice trials than were dull males, and both age classes of bright males obtained higher quality mates earlier in the breeding season than did dull males, when nesting success was higher. In conclusion, although it appears that bright plumage increases access to higher quality mates, age also plays a central role in determining a male's overall reproductive success because of the high levels of sexual promiscuity exhibited by the red-backed fairy-wren.  相似文献   
993.
Adak Island is a remote island in the Aleutian Island archipelago of Alaska (USA) and home to various military activities since World War II. To assess the contaminant burden of one of Adak Island's top predators, livers and kidneys were collected from 26 bald eagle (Haliaeetus leucocephalus) carcasses between 1993 and 1998 for elemental and organochlorine analyses. Mean cadmium, chromium, mercury, and selenium concentrations were consistent with levels observed in other avian studies and were below toxic thresholds. However, elevated concentrations of chromium and mercury in some individuals may warrant concern. Furthermore, although mean polychlorinated biphenyl and pp'-dichlorodiphenyldichloroethylene concentrations were below acute toxic thresholds, they were surprisingly high given Adak Island's remote location.  相似文献   
994.
995.
996.
Sergienko EA  Jordan F 《Biochemistry》2002,41(19):6164-6169
The tetrameric enzyme yeast pyruvate decarboxylase (YPDC) has been known to dissociate into dimers at elevated pH values. However, the interface along which the dissociation occurs, as well as the fundamental kinetic properties of the resulting dimers, remains unknown. The active sites of YPDC are comprised of amino acid residues from two subunits, a property which we utilize to address the issue as to which dimer interface is cleaved under different conditions of dissociation. Hydroxide-induced dissociation of the active site D28A (or D28N) and E477Q variants, each at least 100 times less reactive than wild-type YPDC, followed by reassociation of D28A (or D28N) and E477Q variants led to a remarkable 35-50-fold increase in activity. This result is possible only if the hydroxide-induced dissociation results in a cleavage along the interface between two subunits so that residues D28 and E477 are now separated. Upon reassociation, one of the two active sites of the hybrid dimer will have both residues substituted, whereas the second one will be of the wild-type phenotype. In contrast to the hydroxide-induced dimers, the urea-induced dissociation recently proposed results in dissociation along dimer-dimer interfaces, without separating the active sites, and therefore, on reassociation, these dimers do not regain activity. The significance of the results is discussed in light of a recently proposed alternating sites mechanism for YPDC. A preparative ion-exchange method is reported for the separation and purification of hybrid enzymes.  相似文献   
997.
X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO(4)(2-), E-SO(4)(2-)-Mg(2+), E-SO(4)(2)(-)-Mn(2+), E-SO(4)(2)(-)-Mn(2+)-glycerol, and E-SO(4)(2)(-)-Zn(2+) complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 A, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg(2+) cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg(2+)-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.  相似文献   
998.
D S Olsen  B Jordan  D Chen  R C Wek  D R Cavener 《Genetics》1998,149(3):1495-1509
Genomic and cDNA clones homologous to the yeast GCN2 eIF-2alpha kinase (yGCN2) were isolated from Drosophila melanogaster. The identity of the Drosophila GCN2 (dGCN2) gene is supported by the unique combination of sequence encoding a protein kinase catalytic domain and a domain homologous to histidyl-tRNA synthetase and by the ability of dGCN2 to complement a deletion mutant of the yeast GCN2 gene. Complementation of Deltagcn2 in yeast by dGCN2 depends on the presence of the critical regulatory phosphorylation site (serine 51) of eIF-2alpha. dGCN2 is composed of 10 exons encoding a protein of 1589 amino acids. dGCN2 mRNA is expressed throughout Drosophila development and is particularly abundant at the earliest stages of embryogenesis. The dGCN2 gene was cytogenetically and physically mapped to the right arm of the third chromosome at 100C3 in STS Dm2514. The discovery of GCN2 in higher eukaryotes is somewhat unexpected given the marked differences between the amino acid biosynthetic pathways of yeast vs. Drosophila and other higher eukaryotes. Despite these differences, the presence of GCN2 in Drosophila suggests at least partial conservation from yeast to multicellular organisms of the mechanisms responding to amino acid deprivation.  相似文献   
999.
The flavoprotein dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate. Dihydrooxonate is an analogue of dihydroorotate in which the C5 carbon is substituted by a nitrogen atom. We have investigated dihydrooxonate as a substrate of three DHODs, each representing a distinct evolutionary class of the enzyme, namely the two family 1 enzymes from Lactococcus lactis, DHODA and DHODB, and the enzyme from Escherichia coli, which, like the human enzyme, belongs to family 2. Dihydrooxonate was accepted as a substrate although much less efficiently than dihydroorotate. The first half-reaction was rate limiting according to pre-steady-state and steady-state kinetics with different electron acceptors. Cysteine and serine have been implicated as active site base residues, which promote substrate oxidation in family 1 and family 2 DHODs, respectively. Mutants of DHODA (C130A) and E. coli DHOD (S175A) have extremely low activity in standard assays with dihydroorotate as substrate, but with dihydrooxonate the mutants display considerable and increasing activity above pH 8.0. Thus, the absence of the active site base residue in the enzymes seems to be compensated for by a lower pK(a) of the 5-position in the substrate. Oxonate, the oxidation product of dihydrooxonate, was a competitive inhibitor versus dihydroorotate, and DHODA was the most sensitive of the three enzymes. DHODA was reinvestigated with respect to product inhibition by orotate. The results suggest a classical one-site ping-pong mechanism with fumarate as electron acceptor, while the kinetics with ferricyanide is highly dependent on the detailed reaction conditions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号